Stochastic Claims Reserving

Methods in Insurance
For other titles in the Wiley Finance series
please see www.wiley.com/finance
Dedicated to
Alessia, Luisa and Anja
Contents

Preface xi
Acknowledgement xiii

1 Introduction and Notation 1
1.1 Claims process 1
1.1.1 Accounting principles and accident years 2
1.1.2 Inflation 3
1.2 Structural framework to the claims-reserving problem 5
1.2.1 Fundamental properties of the claims reserving process 7
1.2.2 Known and unknown claims 9
1.3 Outstanding loss liabilities, classical notation 10
1.4 General remarks 12

2 Basic Methods 15
2.1 Chain-ladder method (distribution-free) 15
2.2 Bornhuetter–Ferguson method 21
2.3 Number of IBNyR claims, Poisson model 25
2.4 Poisson derivation of the CL algorithm 27

3 Chain-Ladder Models 33
3.1 Mean square error of prediction 33
3.2 Chain-ladder method 36
3.2.1 Mack model (distribution-free CL model) 37
3.2.2 Conditional process variance 41
3.2.3 Estimation error for single accident years 44
3.2.4 Conditional MSEP, aggregated accident years 55
3.3 Bounds in the unconditional approach 58
3.3.1 Results and interpretation 58
3.3.2 Aggregation of accident years 63
3.3.3 Proof of Theorems 3.17, 3.18 and 3.20 64
3.4 Analysis of error terms in the CL method 70
3.4.1 Classical CL model 70
3.4.2 Enhanced CL model 71
3.4.3 Interpretation 72
3.4.4 CL estimator in the enhanced model 73
3.4.5 Conditional process and parameter prediction errors 74
3.4.6 CL factors and parameter estimation error 75
3.4.7 Parameter estimation 81

4 Bayesian Models 91
4.1 Benktander–Hovinen method and Cape–Cod model 91
 4.1.1 Benktander–Hovinen method 92
 4.1.2 Cape–Cod model 95
4.2 Credible claims reserving methods 98
 4.2.1 Minimizing quadratic loss functions 98
 4.2.2 Distributional examples to credible claims reserving 101
 4.2.3 Log-normal/Log-normal model 105
4.3 Exact Bayesian models 113
 4.3.1 Overdispersed Poisson model with gamma prior distribution 114
 4.3.2 Exponential dispersion family with its associated conjugates 122
4.4 Markov chain Monte Carlo methods 131
4.5 Bühlmann–Straub credibility model 145
4.6 Multidimensional credibility models 154
 4.6.1 Hachemeister regression model 155
 4.6.2 Other credibility models 159
4.7 Kalman filter 160

5 Distributional Models 167
5.1 Log-normal model for cumulative claims 167
 5.1.1 Known variances σ_j^2 170
 5.1.2 Unknown variances 177
5.2 Incremental claims 182
 5.2.1 (Overdispersed) Poisson model 182
 5.2.2 Negative-Binomial model 183
 5.2.3 Log-normal model for incremental claims 185
 5.2.4 Gamma model 186
 5.2.5 Tweedie’s compound Poisson model 188
 5.2.6 Wright’s model 199

6 Generalized Linear Models 201
6.1 Maximum likelihood estimators 201
6.2 Generalized linear models framework 203
6.3 Exponential dispersion family 205
6.4 Parameter estimation in the EDF 208
 6.4.1 MLE for the EDF 208
 6.4.2 Fisher’s scoring method 210
 6.4.3 Mean square error of prediction 214
6.5 Other GLM models 223
6.6 Bornhuetter–Ferguson method, revisited 223
 6.6.1 MSEP in the BF method, single accident year 226
 6.6.2 MSEP in the BF method, aggregated accident years 230
7 Bootstrap Methods
7.1 Introduction
7.1.1 Efron’s non-parametric bootstrap
7.1.2 Parametric bootstrap
7.2 Log-normal model for cumulative sizes
7.3 Generalized linear models
7.4 Chain-ladder method
7.4.1 Approach 1: Unconditional estimation error
7.4.2 Approach 3: Conditional estimation error
7.5 Mathematical thoughts about bootstrapping methods
7.6 Synchronous bootstrapping of seemingly unrelated regressions

8 Multivariate Reserving Methods
8.1 General multivariate framework
8.2 Multivariate chain-ladder method
8.2.1 Multivariate CL model
8.2.2 Conditional process variance
8.2.3 Conditional estimation error for single accident years
8.2.4 Conditional MSEP, aggregated accident years
8.2.5 Parameter estimation
8.3 Multivariate additive loss reserving method
8.3.1 Multivariate additive loss reserving model
8.3.2 Conditional process variance
8.3.3 Conditional estimation error for single accident years
8.3.4 Conditional MSEP, aggregated accident years
8.3.5 Parameter estimation
8.4 Combined Multivariate CL and ALR method
8.4.1 Combined CL and ALR method: the model
8.4.2 Conditional cross process variance
8.4.3 Conditional cross estimation error for single accident years
8.4.4 Conditional MSEP, aggregated accident years
8.4.5 Parameter estimation

9 Selected Topics I: Chain-Ladder Methods
9.1 Munich chain-ladder
9.1.1 The Munich chain-ladder model
9.1.2 Credibility approach to the MCL method
9.1.3 MCL Parameter estimation
9.2 CL Reserving: A Bayesian inference model
9.2.1 Prediction of the ultimate claim
9.2.2 Likelihood function and posterior distribution
9.2.3 Mean square error of prediction
9.2.4 Credibility chain-ladder
9.2.5 Examples
9.2.6 Markov chain Monte Carlo methods
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Selected Topics II: Individual Claims Development Processes</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>10.1 Modelling claims development processes for individual claims</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>10.1.1 Modelling framework</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>10.1.2 Claims reserving categories</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>10.2 Separating IBNeR and IBNyR claims</td>
<td>379</td>
</tr>
<tr>
<td>11</td>
<td>Statistical Diagnostics</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>11.1 Testing age-to-age factors</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>11.1.1 Model choice</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>11.1.2 Age-to-age factors</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>11.1.3 Homogeneity in time and distributional assumptions</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>11.1.4 Correlations</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>11.1.5 Diagonal effects</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>11.2 Non-parametric smoothing</td>
<td>401</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Distributions</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>A.1 Discrete distributions</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>A.1.1 Binomial distribution</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>A.1.2 Poisson distribution</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>A.1.3 Negative-Binomial distribution</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>A.2 Continuous distributions</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>A.2.1 Uniform distribution</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>A.2.2 Normal distribution</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>A.2.3 Log-normal distribution</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>A.2.4 Gamma distribution</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>A.2.5 Beta distribution</td>
<td>408</td>
</tr>
</tbody>
</table>

Bibliography | 409

Index | 417
For a very long time estimating claims reserves was understood as a pure algorithmic method to determine the insurance liabilities. It was only about 30 years ago that actuaries have realized that also claims reserving includes stochastic modelling. Due to this reason stochastic claims reserving modelling is still only poorly understood and treated in the education and in the industry. At ETH Zurich we have decided to close this gap and give a whole lecture (one term) on the subject stochastic claims reserving methods in insurance. After this decision we went to the library to look for appropriate lecture notes. Soon it became clear that there is no appropriate text for our lecture and we started the ambitious project of writing our own notes.

The present literature on claims reserving can be divided into several subgroups. The first subgroup consists of various claims reserving manuals for practitioners. These manuals mainly belong to the old school and describe the application of different algorithms, how to clean and smoothen data, how to choose appropriate parameters, etc. Most of these guidelines focus on specific data sets and give proposals for the estimation of the expected outstanding claims liabilities. They are mainly based on practical experience and mathematical aspects and stochastic modelling are only poorly treated in these notes.

Another subgroup consists of books on non-life insurance mathematics. There are several books and lecture notes that treat the basic claims reserving methods in a chapter or a section. Mostly, these chapters give only a very short introduction into the subject without going into depth.

Finally, there is an enormous number of recent scientific papers in various different actuarial journals. Some of these papers are based on sound mathematics and statistical methods, others are less rigorous. Most of them use different notations and it is often difficult to see in which aspects two papers are different and in which they are not. In consolidated book form there is only very few literature that focuses on stochastic aspects.

Based on this background we started our project of writing a book on stochastic claims reserving methods. Our goal was to get a correct and consistent text that unifies different notations and approaches and gives an overview on the contributions that have attracted our attention. We initially started our first lecture on stochastic claims reserving methods with a text that had about 150 pages, but which was still growing dramatically. This has soon led to the decision to limit the scope of this book to probabilistic aspects and calculations and not to include other or more advanced questions like data cleaning, statistical topics, solvency considerations, market-values of reserves etc. which itself would make for at least another two books. So in the present book we define several different stochastic models that are used for claims reserving. Stochastic properties of these models are derived and analysed,
that is, cashflow prediction is studied within these models and measures for analysing the prediction uncertainties are derived.

Initially, we had in mind an audience having a background typical of someone with a degree in mathematics, statistics or actuarial sciences. But to make the book a valuable reference we have decided to also include more advanced topics and calculations. Still we believe that most results should be understood by a modern trained actuary solving (complex) problems for his company. Furthermore, we recognize that we have learned a lot of new methods and techniques during the writing of this book, which was often very enlightening.

We also recognize that the book does not give a complete survey on the existing literature. Moreover, we would also like to mention that it was often very difficult to track the correct chronological and historical roots to all the results developed. We have tried to be as accurate as possible. For all omissions and also in the light of the fast development of research we apologize to all the authors of such missing papers.
Of course the writing of this book was only possible with the support of several individuals. This work would not have been possible without the grant and generosity of our employers, ETH Zurich and University of Tübingen. At ETH Zurich and University of Tübingen we were supported by our departments, our collaborators, our PhD students and, of course, by the students who attended our lectures. At the heart of this encouragement there are the three professors, Paul Embrechts, Hans Bühlmann and Eberhard Schaich, it is only due to them that we have found the fruitful environment (personal, mathematical and methodological) for completing our project. Furthermore, we were assisted by our PhD students Daniel Alai, Matthias Degen, Jochen Heberle, Luis Huergo, Dominik Lambrigger, Natalia Lysenko and Ramona Maier as well as by the diploma students that have completed their thesis during the past years.

However, the beginning of this project was much earlier, before we even knew that we were once going to teach on this subject. Mario started his professional career at Winterthur Insurance (today AXA-Winterthur) where he became responsible for claims reserving for all non-life insurance business lines of Winterthur Insurance Switzerland. The claims reserving group with Alois Gisler, Ursin Mayer, Francesco Pagliari and Markus Steiner introduced him into all the practical secrets of claims reserving, peculiarities of the different lines of business, etc. Michael began his professional career at the actuarial department of the Baloise insurance company in Basel where he gained valuable practical working experience in claims reserving. The non-life group with Marie-Thérèse Kohler, Markus Buchwalder, Hans-Kaspar Britt and Roger Fässler familiarized him with claims reserving and its significance for modern solvency capital requirements, premium calculation, risk management etc. It is only due to our former employers and colleagues that we have learned and realized the importance of claims reserving.

In the process of writing this book we have met many other practitioners and researchers on claims reserving at different universities, conferences, industry, through the actuarial organizations, through the referee processes of actuarial journals, etc. Among all of them, this book has especially profited in some or another form from the knowledge of Gareth Peters, Pavel Shevchenko, Peter England, Thomas Mack, Alain-Sol Sznitman.

Finally, but most importantly, we thank our private environment who has supported us through all these times. Mario thanks his daughters Alessia and Luisa, his parents Rosmarie and Valentin as well as Priska, Andreas, Susan, Fritz, Simon, Stéphane, Peter, Alessandro, Matthias and the Stolz family. Michael thanks his wife Anja and his parents Hannelore and Roland for their endless love and patience as well as Edeltraud, Ludwig and his friends Beppo and Josef.

M.V.W. and M.M.