Pulse-Width Modulated DC-DC Power Converters
Second Edition

Marian K. Kazimierczuk
Pulse-Width Modulated DC–DC Power Converters
Pulse-Width Modulated DC–DC Power Converters

Second Edition

MARIAN K. KAZIMIERCZUK
Wright State University, Dayton, Ohio, USA

WILEY
To my wife Alicja
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Author</td>
<td>xxi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxiii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Classification of Power Supplies</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Basic Functions of Voltage Regulators</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Power Relationships in DC–DC Converters</td>
<td>4</td>
</tr>
<tr>
<td>1.4 DC Transfer Functions of DC–DC Converters</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Static Characteristics of DC Voltage Regulators</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Dynamic Characteristics of DC Voltage Regulators</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Linear Voltage Regulators</td>
<td>12</td>
</tr>
<tr>
<td>1.7.1 Series Voltage Regulator</td>
<td>13</td>
</tr>
<tr>
<td>1.7.2 Shunt Voltage Regulator</td>
<td>14</td>
</tr>
<tr>
<td>1.8 Topologies of PWM DC–DC Converters</td>
<td>16</td>
</tr>
<tr>
<td>1.9 Relationships Among Current, Voltage, Energy, and Power</td>
<td>18</td>
</tr>
<tr>
<td>1.10 Summary</td>
<td>19</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>Review Questions</td>
<td>20</td>
</tr>
<tr>
<td>Problems</td>
<td>21</td>
</tr>
<tr>
<td>2 Buck PWM DC–DC Converter</td>
<td>22</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>22</td>
</tr>
<tr>
<td>2.2 DC Analysis of PWM Buck Converter for CCM</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1 Circuit Description</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2 Assumptions</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Time Interval: $0 < t \leq DT$</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4 Time Interval: $DT < t \leq T$</td>
<td>26</td>
</tr>
<tr>
<td>2.2.5 Device Stresses for CCM</td>
<td>27</td>
</tr>
<tr>
<td>2.2.6 DC Voltage Transfer Function for CCM</td>
<td>27</td>
</tr>
<tr>
<td>2.2.7 Boundary Between CCM and DCM</td>
<td>29</td>
</tr>
<tr>
<td>2.2.8 Capacitors</td>
<td>31</td>
</tr>
<tr>
<td>2.2.9 Ripple Voltage in Buck Converter for CCM</td>
<td>33</td>
</tr>
<tr>
<td>2.2.10 Switching Losses with Linear MOSFET Output Capacitance</td>
<td>39</td>
</tr>
<tr>
<td>2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance</td>
<td>40</td>
</tr>
<tr>
<td>2.2.12 Power Losses and Efficiency of Buck Converter for CCM</td>
<td>43</td>
</tr>
<tr>
<td>2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM</td>
<td>48</td>
</tr>
<tr>
<td>2.2.14 MOSFET Gate-Drive Power</td>
<td>48</td>
</tr>
</tbody>
</table>
Contents ix

3.4 Bidirectional Buck and Boost Converters 127
3.5 Synchronous Boost Converter 129
3.6 Tapped-Inductor Boost Converters 129
 3.6.1 Tapped-Inductor Common-Diode Boost Converter 131
 3.6.2 Tapped-Inductor Common-Load Boost Converter 132
3.7 Duality 133
3.8 Power Factor Correction 134
 3.8.1 Power Factor 134
 3.8.2 Boost Power Factor Corrector 138
 3.8.3 Electronic Ballasts for Fluorescent Lamps 141
3.9 Summary 141
References 142
Review Questions 143
Problems 143

4 Buck–Boost PWM DC–DC Converter 145
 4.1 Introduction 145
 4.2 DC Analysis of PWM Buck–Boost Converter for CCM 145
 4.2.1 Circuit Description 145
 4.2.2 Assumptions 146
 4.2.3 Time Interval: $0 < t \leq DT$ 146
 4.2.4 Time Interval: $DT < t \leq T$ 148
 4.2.5 DC Voltage Transfer Function for CCM 149
 4.2.6 Device Stresses for CCM 150
 4.2.7 Boundary Between CCM and DCM 151
 4.2.8 Ripple Voltage in Buck–Boost Converter for CCM 152
 4.2.9 Power Losses and Efficiency of the Buck–Boost Converter for CCM 155
 4.2.10 DC Voltage Transfer Function of Lossy Buck–Boost Converter for CCM 158
 4.2.11 Design of Buck–Boost Converter for CCM 159
 4.3 DC Analysis of PWM Buck–Boost Converter for DCM 162
 4.3.1 Time Interval: $0 < t \leq DT$ 165
 4.3.2 Time Interval: $DT < t \leq (D + D_1)T$ 166
 4.3.3 Time Interval: $(D + D_1)T < t \leq T$ 167
 4.3.4 Device Stresses of the Buck–Boost Converter in DCM 167
 4.3.5 DC Voltage Transfer Function of the Buck–Boost Converter for DCM 167
 4.3.6 Maximum Inductance for DCM 170
 4.3.7 Power Losses and Efficiency of the Buck–Boost Converter in DCM 172
 4.3.8 Design of Buck–Boost Converter for DCM 174
 4.4 Bidirectional Buck–Boost Converter 180
 4.5 Synthesis of Buck–Boost Converter 181
 4.6 Synthesis of Boost–Buck (Čuk) Converter 183
 4.7 Noninverting Buck–Boost Converters 184
 4.7.1 Cascaded Noninverting Buck–Boost Converters 184
 4.7.2 Four-Transistor Noninverting Buck–Boost Converters 184
 4.8 Tapped-Inductor Buck–Boost Converters 186
 4.8.1 Tapped-Inductor Common-Diode Buck–Boost Converter 186
 4.8.2 Tapped-Inductor Common-Transistor Buck–Boost Converter 187
 4.8.3 Tapped-Inductor Common-Load Buck–Boost Converter 188
 4.8.4 Tapped-Inductor Common-Source Buck–Boost Converter 191
5 Flyback PWM DC–DC Converter

5.1 Introduction
5.2 Transformers
5.3 DC Analysis of PWM Flyback Converter for CCM
5.3.1 Derivation of PWM Flyback Converter
5.3.2 Circuit Description
5.3.3 Assumptions
5.3.4 Time Interval: 0 < t ≤ DT
5.3.5 Time Interval: DT < t ≤ T
5.3.6 DC Voltage Transfer Function for CCM
5.3.7 Boundary Between CCM and DCM
5.3.8 Ripple Voltage in Flyback Converter for CCM
5.3.9 Power Losses and Efficiency of Flyback Converter for CCM
5.3.10 DC Voltage Transfer Function of Lossy Converter for CCM
5.3.11 Design of Flyback Converter for CCM
5.4 DC Analysis of PWM Flyback Converter for DCM
5.4.1 Time Interval: 0 < t ≤ DT
5.4.2 Time Interval: DT < t ≤ (D + D1)T
5.4.3 Time Interval: (D + D1)T < t ≤ T
5.4.4 DC Voltage Transfer Function for DCM
5.4.5 Maximum Magnetizing Inductance for DCM
5.4.6 Ripple Voltage in Flyback Converter for DCM
5.4.7 Power Losses and Efficiency of Flyback Converter for DCM
5.4.8 Design of Flyback Converter for DCM
5.5 Multiple-Output Flyback Converter
5.6 Bidirectional Flyback Converter
5.7 Ringing in Flyback Converter
5.8 Flyback Converter with Passive Dissipative Snubber
5.9 Flyback Converter with Zener Diode Voltage Clamp
5.10 Flyback Converter with Active Clamping
5.11 Two-Transistor Flyback Converter
5.12 Summary

6 Forward PWM DC–DC Converter

6.1 Introduction
6.2 DC Analysis of PWM Forward Converter for CCM
6.2.1 Derivation of Forward PWM Converter
6.2.2 Time Interval: 0 < t ≤ DT
6.2.3 Time Interval: DT < t ≤ DT + tm
6.2.4 Time Interval: DT + tm < t ≤ T
6.2.5 Maximum Duty Cycle
6.2.6 Device Stresses 254

6.2.7 DC Voltage Transfer Function for CCM 255

6.2.8 Boundary Between CCM and DCM 255

6.2.9 Ripple Voltage in Forward Converter for CCM 256

6.2.10 Power Losses and Efficiency of Forward Converter for CCM 258

6.2.11 DC Voltage Transfer Function of Lossy Converter for CCM 261

6.2.12 Design of Forward Converter for CCM 262

6.3 DC Analysis of PWM Forward Converter for DCM 269

6.3.1 Time Interval: $0 < t \leq DT$ 269

6.3.2 Time Interval: $DT < t \leq DT + t_m$ 272

6.3.3 Time Interval: $DT + t_m < t \leq (D + D_1)T$ 273

6.3.4 Time Interval: $(D + D_1)T < t \leq T$ 273

6.3.5 DC Voltage Transfer Function for DCM 274

6.3.6 Maximum Inductance for DCM 277

6.3.7 Power Losses and Efficiency of Forward Converter for DCM 278

6.3.8 Design of Forward Converter for DCM 280

6.4 Multiple-Output Forward Converter 288

6.5 Forward Converter with Synchronous Rectifier 288

6.6 Forward Converters with Active Clamping 288

6.7 Two-Switch Forward Converter 290

6.8 Forward–Flyback Converter 291

6.9 Summary 292

References 293

Review Questions 293

Problems 294

7 Half-Bridge PWM DC–DC Converter 296

7.1 Introduction 296

7.2 DC Analysis of PWM Half-Bridge Converter for CCM 296

7.2.1 Circuit Description 296

7.2.2 Assumptions 299

7.2.3 Time Interval: $0 < t \leq DT$ 299

7.2.4 Time Interval: $DT < t \leq T/2$ 301

7.2.5 Time Interval: $T/2 < t \leq T/2 + DT$ 303

7.2.6 Time Interval: $T/2 + DT < t \leq T$ 304

7.2.7 Device Stresses 304

7.2.8 DC Voltage Transfer Function of Lossless Half-Bridge Converter for CCM 304

7.2.9 Boundary Between CCM and DCM 305

7.2.10 Ripple Voltage in Half-Bridge Converter for CCM 306

7.2.11 Power Losses and Efficiency of Half-Bridge Converter for CCM 308

7.2.12 DC Voltage Transfer Function of Lossy Converter for CCM 311

7.2.13 Design of Half-Bridge Converter for CCM 312

7.3 DC Analysis of PWM Half-Bridge Converter for DCM 315

7.3.1 Time Interval: $0 < t \leq DT$ 315

7.3.2 Time Interval: $DT < t \leq (D + D_1)T$ 320

7.3.3 Time Interval: $(D + D_1)T < t \leq T/2$ 322

7.3.4 DC Voltage Transfer Function for DCM 322

7.3.5 Maximum Inductance for DCM 326
8 Full-Bridge PWM DC–DC Converter

8.1 Introduction

8.2 DC Analysis of PWM Full-Bridge Converter for CCM

8.2.1 Circuit Description

8.2.2 Assumptions

8.2.3 Time Interval: \(0 < t \leq DT\)

8.2.4 Time Interval: \(DT < t \leq T/2\)

8.2.5 Time Interval: \(T/2 < t \leq T/2 + DT\)

8.2.6 Time Interval: \(T/2 + DT < t \leq T\)

8.2.7 Device Stresses

8.2.8 DC Voltage Transfer Function of Lossless Full-Wave Converter for CCM

8.2.9 Boundary Between CCM and DCM

8.2.10 Ripple Voltage in Full-Bridge Converter for CCM

8.2.11 Power Losses and Efficiency of Full-Bridge Converter for CCM

8.2.12 DC Voltage Transfer Function of Lossy Converter for CCM

8.2.13 Design of Full-Bridge Converter for CCM

8.3 DC Analysis of PWM Full-Bridge Converter for DCM

8.3.1 Time Interval: \(0 < t \leq DT\)

8.3.2 Time Interval: \(DT < t \leq (D + D_1)T\)

8.3.3 Time Interval: \((D + D_1)T < t \leq T/2\)

8.3.4 DC Voltage Transfer Function for DCM

8.3.5 Maximum Inductance for DCM

8.4 Phase-Controlled Full-Bridge Converter

8.5 Summary

References

Review Questions

Problems

9 Small-Signal Models of PWM Converters for CCM and DCM

9.1 Introduction

9.2 Assumptions

9.3 Averaged Model of Ideal Switching Network for CCM

9.4 Averaged Values of Switched Resistances

9.5 Model Reduction

9.6 Large-Signal Averaged Model for CCM

9.7 DC and Small-Signal Circuit Linear Models of Switching Network for CCM

9.7.1 Large-Signal Circuit Model of Switching Network for CCM

9.7.2 Linearization of Switching Network Model for CCM

9.8 Block Diagram of Small-signal Model of PWM DC–DC Converters

9.9 Family of PWM Converter Models for CCM

9.10 PWM Small-Signal Switch Model for CCM

9.11 Modeling of Ideal Switching Network for DCM

9.11.1 Relationships Among DC Components for DCM

9.11.2 Small-Signal Model of Ideal Switching Network for DCM
9.12 Averaged Parasitic Resistances for DCM 398
9.13 Summary 400
References 402
Review Questions 405
Problems 405

10 Small-Signal Characteristics of Buck Converter for CCM 407
10.1 Introduction 407
10.2 Small-Signal Model of the PWM Buck Converter 407
10.3 Open-Loop Transfer Functions 408
 10.3.1 Open-Loop Control-to-Output Transfer Function 409
 10.3.2 Delay in Control-to-Output Transfer Function 416
 10.3.3 Open-Loop Input-to-Output Transfer Function 418
 10.3.4 Open-Loop Input Impedance 420
 10.3.5 Open-Loop Output Impedance 423
10.4 Open-Loop Step Responses 426
 10.4.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage 426
 10.4.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle 431
 10.4.3 Open-Loop Response of Output Voltage to Step Change in Load Current 433
10.5 Open-Loop DC Transfer Functions 434
10.6 Summary 436
References 436
Review Questions 437
Problems 438

11 Small-Signal Characteristics of Boost Converter for CCM 439
11.1 Introduction 439
11.2 DC Characteristics 439
11.3 Open-Loop Control-to-Output Transfer Function 440
11.4 Delay in Open-Loop Control-to-Output Transfer Function 449
11.5 Open-Loop Audio Susceptibility 451
11.6 Open-Loop Input Impedance 455
11.7 Open-Loop Output Impedance 457
11.8 Open-Loop Step Responses 461
 11.8.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage 461
 11.8.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle 464
 11.8.3 Open-Loop Response of Output Voltage to Step Change in Load Current 465
11.9 Summary 467
References 467
Review Questions 468
Problems 468

12 Voltage-Mode Control of PWM Buck Converter 470
12.1 Introduction 470
12.2 Properties of Negative Feedback 471
12.3 Stability 474
12.4 Single-Loop Control of PWM Buck Converter 475
12.5 Closed-Loop Small-Signal Model of Buck Converter 478
12.6 Pulse-Width Modulator 478