Fundamentals of Digital Image Processing

A Practical Approach with Examples in Matlab

Chris Solomon
School of Physical Sciences, University of Kent, Canterbury, UK

Toby Breckon
School of Engineering, Cranfield University, Bedfordshire, UK

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Fundamentals of Digital Image Processing
Fundamentals of Digital Image Processing

A Practical Approach with Examples in Matlab

Chris Solomon
School of Physical Sciences, University of Kent, Canterbury, UK

Toby Breckon
School of Engineering, Cranfield University, Bedfordshire, UK

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Contents

Preface xi

Using the book website xv

1 Representation 1
 1.1 What is an image? 1
 1.1.1 Image layout 1
 1.1.2 Image colour 2
 1.2 Resolution and quantization 3
 1.2.1 Bit-plane splicing 4
 1.3 Image formats 5
 1.3.1 Image data types 6
 1.3.2 Image compression 7
 1.4 Colour spaces 9
 1.4.1 RGB 10
 1.4.1.1 RGB to grey-scale image conversion 11
 1.4.2 Perceptual colour space 12
 1.5 Images in Matlab 14
 1.5.1 Reading, writing and querying images 14
 1.5.2 Basic display of images 15
 1.5.3 Accessing pixel values 16
 1.5.4 Converting image types 17

Exercises 18

2 Formation 21
 2.1 How is an image formed? 21
 2.2 The mathematics of image formation 22
 2.2.1 Introduction 22
 2.2.2 Linear imaging systems 23
 2.2.3 Linear superposition integral 24
 2.2.4 The Dirac delta or impulse function 25
 2.2.5 The point-spread function 28
CONTENTS

2.2.6 Linear shift-invariant systems and the convolution integral 29
2.2.7 Convolution: its importance and meaning 30
2.2.8 Multiple convolution: N imaging elements in a linear shift-invariant system 34
2.2.9 Digital convolution 34
2.3 The engineering of image formation 37
 2.3.1 The camera 38
 2.3.2 The digitization process
 2.3.2.1 Quantization 40
 2.3.2.2 Digitization hardware 42
 2.3.2.3 Resolution versus performance 43
 2.3.3 Noise 44
Exercises 46

3 Pixels 49
 3.1 What is a pixel? 49
 3.2 Operations upon pixels
 3.2.1 Arithmetic operations on images
 3.2.1.1 Image addition and subtraction 51
 3.2.1.2 Multiplication and division 53
 3.2.2 Logical operations on images 54
 3.2.3 Thresholding 55
 3.3 Point-based operations on images 57
 3.3.1 Logarithmic transform 57
 3.3.2 Exponential transform 59
 3.3.3 Power-law (gamma) transform
 3.3.3.1 Application: gamma correction 62
 3.4 Pixel distributions: histograms 63
 3.4.1 Histograms for threshold selection 65
 3.4.2 Adaptive thresholding 66
 3.4.3 Contrast stretching 67
 3.4.4 Histogram equalization
 3.4.4.1 Histogram equalization theory 69
 3.4.4.2 Histogram equalization theory: discrete case 70
 3.4.4.3 Histogram equalization in practice 71
 3.4.5 Histogram matching
 3.4.5.1 Histogram-matching theory 73
 3.4.5.2 Histogram-matching theory: discrete case 74
 3.4.5.3 Histogram matching in practice 75
 3.4.6 Adaptive histogram equalization 76
 3.4.7 Histogram operations on colour images 79
Exercises 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Restoration by the inverse Fourier filter</td>
<td>143</td>
</tr>
<tr>
<td>6.4</td>
<td>The Wiener–Helstrom Filter</td>
<td>146</td>
</tr>
<tr>
<td>6.5</td>
<td>Origin of the Wiener–Helstrom filter</td>
<td>147</td>
</tr>
<tr>
<td>6.6</td>
<td>Acceptable solutions to the imaging equation</td>
<td>151</td>
</tr>
<tr>
<td>6.7</td>
<td>Constrained deconvolution</td>
<td>151</td>
</tr>
<tr>
<td>6.8</td>
<td>Estimating an unknown point-spread function or optical transfer function</td>
<td>154</td>
</tr>
<tr>
<td>6.9</td>
<td>Blind deconvolution</td>
<td>156</td>
</tr>
<tr>
<td>6.10</td>
<td>Iterative deconvolution and the Lucy–Richardson algorithm</td>
<td>158</td>
</tr>
<tr>
<td>6.11</td>
<td>Matrix formulation of image restoration</td>
<td>161</td>
</tr>
<tr>
<td>6.12</td>
<td>The standard least-squares solution</td>
<td>162</td>
</tr>
<tr>
<td>6.13</td>
<td>Constrained least-squares restoration</td>
<td>163</td>
</tr>
<tr>
<td>6.14</td>
<td>Stochastic input distributions and Bayesian estimators</td>
<td>165</td>
</tr>
<tr>
<td>6.15</td>
<td>The generalized Gauss–Markov estimator</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>Geometry</td>
<td>169</td>
</tr>
<tr>
<td>7.1</td>
<td>The description of shape</td>
<td>169</td>
</tr>
<tr>
<td>7.2</td>
<td>Shape-preserving transformations</td>
<td>170</td>
</tr>
<tr>
<td>7.3</td>
<td>Shape transformation and homogeneous coordinates</td>
<td>171</td>
</tr>
<tr>
<td>7.4</td>
<td>The general 2-D affine transformation</td>
<td>173</td>
</tr>
<tr>
<td>7.5</td>
<td>Affine transformation in homogeneous coordinates</td>
<td>174</td>
</tr>
<tr>
<td>7.6</td>
<td>The Procrustes transformation</td>
<td>175</td>
</tr>
<tr>
<td>7.7</td>
<td>Procrustes alignment</td>
<td>176</td>
</tr>
<tr>
<td>7.8</td>
<td>The projective transform</td>
<td>180</td>
</tr>
<tr>
<td>7.9</td>
<td>Nonlinear transformations</td>
<td>184</td>
</tr>
<tr>
<td>7.10</td>
<td>Warping: the spatial transformation of an image</td>
<td>186</td>
</tr>
<tr>
<td>7.11</td>
<td>Overdetermined spatial transformations</td>
<td>189</td>
</tr>
<tr>
<td>7.12</td>
<td>The piecewise warp</td>
<td>191</td>
</tr>
<tr>
<td>7.13</td>
<td>The piecewise affine warp</td>
<td>191</td>
</tr>
<tr>
<td>7.14</td>
<td>Warping: forward and reverse mapping</td>
<td>194</td>
</tr>
<tr>
<td>8</td>
<td>Morphological processing</td>
<td>197</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>8.2</td>
<td>Binary images: foreground, background and connectedness</td>
<td>197</td>
</tr>
<tr>
<td>8.3</td>
<td>Structuring elements and neighbourhoods</td>
<td>198</td>
</tr>
<tr>
<td>8.4</td>
<td>Dilation and erosion</td>
<td>200</td>
</tr>
<tr>
<td>8.5</td>
<td>Dilation, erosion and structuring elements within Matlab</td>
<td>201</td>
</tr>
<tr>
<td>8.6</td>
<td>Structuring element decomposition and Matlab</td>
<td>202</td>
</tr>
<tr>
<td>8.7</td>
<td>Effects and uses of erosion and dilation</td>
<td>204</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Application of erosion to particle sizing</td>
<td>207</td>
</tr>
<tr>
<td>8.8</td>
<td>Morphological opening and closing</td>
<td>209</td>
</tr>
<tr>
<td>8.8.1</td>
<td>The rolling-ball analogy</td>
<td>210</td>
</tr>
<tr>
<td>8.9</td>
<td>Boundary extraction</td>
<td>212</td>
</tr>
<tr>
<td>8.10</td>
<td>Extracting connected components</td>
<td>213</td>
</tr>
</tbody>
</table>
10.9 Interest operators 274
10.10 Watershed segmentation 279
10.11 Segmentation functions 280
10.12 Image segmentation with Markov random fields 286
 10.12.1 Parameter estimation 288
 10.12.2 Neighbourhood weighting parameter θ_n 289
 10.12.3 Minimizing $U(x | y)$: the iterated conditional modes algorithm 290

11 Classification 291
 11.1 The purpose of automated classification 291
 11.2 Supervised and unsupervised classification 292
 11.3 Classification: a simple example 292
 11.4 Design of classification systems 294
 11.5 Simple classifiers: prototypes and minimum distance criteria 296
 11.6 Linear discriminant functions 297
 11.7 Linear discriminant functions in N dimensions 301
 11.8 Extension of the minimum distance classifier and the Mahalanobis distance 302
 11.9 Bayesian classification: definitions 303
 11.10 The Bayes decision rule 304
 11.11 The multivariate normal density 306
 11.12 Bayesian classifiers for multivariate normal distributions 307
 11.12.1 The Fisher linear discriminant 310
 11.12.2 Risk and cost functions 311
 11.13 Ensemble classifiers 312
 11.13.1 Combining weak classifiers: the AdaBoost method 313
 11.14 Unsupervised learning: k-means clustering 313

Further reading 317

Index 319
Preface

Scope of this book

This is an introductory text on the science (and art) of image processing. The book also employs the Matlab programming language and toolboxes to illuminate and consolidate some of the elementary but key concepts in modern image processing and pattern recognition.

The authors are firm believers in the old adage, “Hear and forget. . ., See and remember. . ., Do and know”. For most of us, it is through good examples and gently guided experimentation that we really learn. Accordingly, the book has a large number of carefully chosen examples, graded exercises and computer experiments designed to help the reader get a real grasp of the material. All the program code (.m files) used in the book, corresponding to the examples and exercises, are made available to the reader/course instructor and may be downloaded from the book’s dedicated web site – www.fundipbook.com.

Who is this book for?

For undergraduate and graduate students in the technical disciplines, for technical professionals seeking a direct introduction to the field of image processing and for instructors looking to provide a hands-on, structured course. This book intentionally starts with simple material but we also hope that relative experts will nonetheless find some interesting and useful material in the latter parts.

Aims

What then are the specific aims of this book ? Two of the principal aims are –

- To introduce the reader to some of the key concepts and techniques of modern image processing.

- To provide a framework within which these concepts and techniques can be understood by a series of examples, exercises and computer experiments.
These are, perhaps, aims which one might reasonably expect from any book on a technical subject. However, we have one further aim namely to provide the reader with the fastest, most direct route to acquiring a real hands-on understanding of image processing. We hope this book will give you a real fast-start in the field.

Assumptions

We make no assumptions about the reader’s mathematical background beyond that expected at the undergraduate level in the technical sciences – ie reasonable competence in calculus, matrix algebra and basic statistics.

Why write this book?

There are already a number of excellent and comprehensive texts on image processing and pattern recognition and we refer the interested reader to a number in the appendices of this book. There are also some exhaustive and well-written books on the Matlab language. What the authors felt was lacking was an image processing book which combines a simple exposition of principles with a means to quickly test, verify and experiment with them in an instructive and interactive way.

In our experience, formed over a number of years, Matlab and the associated image processing toolbox are extremely well-suited to help achieve this aim. It is simple but powerful and its key feature in this context is that it enables one to concentrate on the image processing concepts and techniques (i.e. the real business at hand) while keeping concerns about programming syntax and data management to a minimum.

What is Matlab?

Matlab is a programming language with an associated set of specialist software toolboxes. It is an industry standard in scientific computing and used worldwide in the scientific, technical, industrial and educational sectors. Matlab is a commercial product and information on licences and their cost can be obtained direct by enquiry at the web-site www.mathworks.com. Many Universities all over the world provide site licenses for their students.

What knowledge of Matlab is required for this book?

Matlab is very much part of this book and we use it extensively to demonstrate how certain processing tasks and approaches can be quickly implemented and tried out in practice. Throughout the book, we offer comments on the Matlab language and the best way to achieve certain image processing tasks in that language. Thus the learning of concepts in image processing and their implementation within Matlab go hand-in-hand in this text.
Is the book any use then if I don’t know Matlab?

Yes. This is fundamentally a book about image processing which aims to make the subject accessible and practical. It is not a book about the Matlab programming language. Although some prior knowledge of Matlab is an advantage and will make the practical implementation easier, we have endeavoured to maintain a self-contained discussion of the concepts which will stand up apart from the computer-based material.

If you have not encountered Matlab before and you wish to get the maximum from this book, please refer to the Matlab and Image Processing primer on the book website (http://www.fundipbook.com). This aims to give you the essentials on Matlab with a strong emphasis on the basic properties and manipulation of images.

Thus, you do not have to be knowledgeable in Matlab to profit from this book.

Practical issues

To carry out the vast majority of the examples and exercises in the book, the reader will need access to a current licence for Matlab and the Image Processing Toolbox only.

Features of this book and future support

This book is accompanied by a dedicated website (http://www.fundipbook.com). The site is intended to act as a point of contact with the authors, as a repository for the code examples (Matlab .m files) used in the book and to host additional supporting materials for the reader and instructor.

About the authors

Chris Solomon gained a B.Sc in theoretical physics from Durham University and a Ph.D in Medical imaging from the Royal Marsden Hospital, University of London. Since 1994, he has been on the Faculty at the School of Physical Sciences where he is currently a Reader in Forensic Imaging. He has broad research interests focussing on evolutionary and genetic algorithms, image processing and statistical learning methods with a special interest in the human face. Chris is also Technical Director of Visionmetric Ltd, a company he founded in 1999 and which is now the UK’s leading provider of facial composite software and training in facial identification to police forces. He has received a number of UK and European awards for technology innovation and commercialisation of academic research.

Toby Breckon holds a Ph.D in Informatics and B.Sc in Artificial Intelligence and Computer Science from the University of Edinburgh. Since 2006 he has been a lecturer in image processing and computer vision in the School of Engineering at Cranfield University. His key research interests in this domain relate to 3D sensing, real-time vision, sensor fusion, visual surveillance and robotic deployment. He is additionally a visiting member of faculty at Ecole Supérieure des Technologies Industrielles Avancées (France) and has held visiting faculty positions in China and Japan. In 2008 he led the development of