Advanced Wireless Networks

4G Technologies

Savo G. Glisic
University of Oulu, Finland

John Wiley & Sons, Ltd
Advanced Wireless Networks
To my family
Contents

Preface
ix

1 Fundamentals
1.1 4G Networks and Composite Radio Environment
1.2 Protocol Boosters
1.2.1 One-element error detection booster for UDP
1.2.2 One-element ACK compression booster for TCP
1.2.3 One-element congestion control booster for TCP
1.2.4 One-element ARQ booster for TCP
1.2.5 A forward erasure correction booster for IP or TCP
1.2.6 Two-element jitter control booster for IP
1.2.7 Two-element selective ARQ booster for IP or TCP
1.3 Hybrid 4G Wireless Network Protocols
1.3.1 Control messages and state transition diagrams
1.3.2 Direct transmission
1.3.3 The protocol for one-hop direct transmission
1.3.4 Protocols for two-hop direct-transmission mode
1.4 Green Wireless Networks
References

2 Physical Layer and Multiple Access
2.1 Advanced Time Division Multiple Access-ATDMA
2.2 Code Division Multiple Access
2.3 Orthogonal Frequency Division Multiplexing
2.4 Multicarrier CDMA
2.5 Ultrawide Band Signal
2.6 MIMO Channels and Space Time Coding
References
CONTENTS

3 Channel Modeling for 4G

3.1 Macrocellular Environments (1.8 GHz) 47
3.2 Urban Spatial Radio Channels in Macro/MicroCell Environment (2.154 GHz) 50
 3.2.1 Description of environment 51
 3.2.2 Results 52
3.3 MIMO Channels in Micro- and PicoCell Environment (1.71/2.05 GHz) 53
 3.3.1 Measurement set-ups 56
 3.3.2 The eigenanalysis method 57
 3.3.3 Definition of the power allocation schemes 57
3.4 Outdoor Mobile Channel (5.3 GHz) 58
 3.4.1 Path loss models 60
 3.4.2 Path number distribution 60
 3.4.3 Rotation measurements in an urban environment 61
3.5 Microcell Channel (8.45 GHz) 64
 3.5.1 Azimuth profile 65
 3.5.2 Delay profile for the forward arrival waves 65
 3.5.3 Short-term azimuth spread for forward arrival waves 65
3.6 Wireless MIMO LAN Environments (5.2 GHz) 66
 3.6.1 Data evaluation 66
 3.6.2 Capacity computation 68
 3.6.3 Measurement environments 69
3.7 Indoor WLAN Channel (17 GHz) 70
3.8 Indoor WLAN Channel (60 GHz) 77
 3.8.1 Definition of the statistical parameters 78
3.9 UWB Channel Model 79
 3.9.1 The large-scale statistics 82
 3.9.2 The small-scale statistics 84
 3.9.3 The statistical model 86
 3.9.4 Simulation steps 87
 3.9.5 Clustering models for the indoor multipath propagation channel 87
 3.9.6 Path loss modeling 90
References 93

4 Adaptive and Reconfigurable Link Layer 101
4.1 Link Layer Capacity of Adaptive Air Interfaces 101
 4.1.1 The MAC channel model 103
 4.1.2 The Markovian model 103
 4.1.3 Goodput and link adaptation 105
 4.1.4 Switching hysteresis 107
 4.1.5 Link service rate with exact mode selection 108
 4.1.6 Imperfections in the adaptation chain 110
 4.1.7 Estimation process and estimate error 111
 4.1.8 Channel process and estimation delay 111
 4.1.9 Feedback process and mode command reception 112
 4.1.10 Link service rate with imperfections 112
 4.1.11 Sensitivity of state probabilities to hysteresis region width 114
 4.1.12 Estimation process and estimate error 115
 4.1.13 Feedback process and acquisition errors 118
4.2 Adaptive Transmission in Ad Hoc Networks 118

4.3 Adaptive Hybrid ARQ Schemes for Wireless Links 126
4.3.1 RS codes 127
4.3.2 PHY and MAC frame structures 127
4.3.3 Error-control schemes 129
4.3.4 Performance of adaptive FEC2 132
4.3.5 Simulation results 134

4.4 Stochastic Learning Link Layer Protocol 135
4.4.1 Stochastic learning control 135
4.4.2 Adaptive link layer protocol 136

4.5 Infrared Link Access Protocol 139
4.5.1 The IrLAP layer 140
4.5.2 IrLAP functional model description 142

References 145

5 Adaptive Medium Access Control 149
5.1 WLAN Enhanced Distributed Coordination Function 149
5.2 Adaptive MAC for WLAN with Adaptive Antennas 150
5.2.1 Description of the protocols 153
5.3 MAC for Wireless Sensor Networks 158
5.3.1 S-MAC protocol design 160
5.3.2 Periodic listen and sleep 161
5.3.3 Collision avoidance 161
5.3.4 Coordinated sleeping 162
5.3.5 Choosing and maintaining schedules 162
5.3.6 Maintaining synchronization 163
5.3.7 Adaptive listening 164
5.3.8 Overhearing avoidance and message passing 165
5.3.9 Overhearing avoidance 165
5.3.10 Message passing 166

5.4 MAC for Ad Hoc Networks 168
5.4.1 Carrier sense wireless networks 170
5.4.2 Interaction with upper layers 174

References 175

6 Teletraffic Modeling and Analysis 179
6.1 Channel Holding Time in PCS Networks 179

References 188

7 Adaptive Network Layer 191
7.1 Graphs and Routing Protocols 191
7.1.1 Elementary concepts 191
7.1.2 Directed graph 191
7.1.3 Undirected graph 192
7.1.4 Degree of a vertex 192
7.1.5 Weighted graph 193
7.1.6 Walks and paths 193
12.1.4 Hybrid channel borrowing schemes 373
12.1.5 Dynamic channel allocation 375
12.1.6 Centralized DCA schemes 376
12.1.7 Cell-based distributed DCA schemes 379
12.1.8 Signal strength measurement-based distributed DCA schemes 380
12.1.9 One-dimensional cellular systems 382
12.1.10 Fixed reuse partitioning 384
12.1.11 Adaptive channel allocation reuse partitioning (ACA RUP) 385

12.2 Resource Management in 4G 388

12.3 Mobile Agent-based Resource Management 389
 12.3.1 Advanced resource management system 392

12.4 CDMA Cellular Multimedia Wireless Networks 395
 12.4.1 Principles of SCAC 400
 12.4.2 QoS differentiation paradigms 404
 12.4.3 Traffic model 406
 12.4.4 Performance evaluation 408
 12.4.5 Related results 408
 12.4.6 Modeling-based static complete-sharing MdCAC system 409
 12.4.7 Measurement-based complete-sharing MsCAC system 410
 12.4.8 Complete-sharing dynamic SCAC system 411
 12.4.9 Dynamic SCAC system with QoS differentiation 412
 12.4.10 Example of a single-class system 412
 12.4.11 NRT packet access control 414
 12.4.12 Assumptions 415
 12.4.13 Estimation of average upper-limit (UL) data throughput 416
 12.4.14 DFIMA, dynamic feedback information-based access control 417
 12.4.15 Performance examples 418
 12.4.16 Implementation issues 425

12.5 Joint Data Rate and Power Management 426
 12.5.1 Centralized minimum total transmitted power (CMTTP) algorithm 427
 12.5.2 Maximum throughput power control (MTPC) 428
 12.5.3 Statistically distributed multirate power control (SDMPC) 430
 12.5.4 Lagrangian multiplier power control (LRPC) 431
 12.5.5 Selective power control (SPC) 432
 12.5.6 RRM in multiobjective (MO) framework 432
 12.5.7 Multiobjective distributed power and rate control (MODPRC) 433
 12.5.8 Multiobjective totally distributed power and rate control (MOTDPRC) 435
 12.5.9 Throughput maximization/power minimization (MTMPC) 436

12.6 Dynamic Spectra Sharing in Wireless Networks 439
 12.6.1 Channel capacity 439
 12.6.2 Channel models 440
 12.6.3 Diversity reception 440
 12.6.4 Performance evaluation 441
 12.6.5 Multiple access techniques and user capacity 441
 12.6.6 Multiuser detection 442
12.6.7	Interference and coexistence	442
12.6.8	Channel estimation/imperfections	443
12.6.9	Signal and interference model	443
12.6.10	Receiver structure	444
12.6.11	Interference rejection circuit model	446
12.6.12	Performance analysis	451
12.6.13	Performance examples	451
References		457

13 Ad Hoc Networks | 465 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Routing Protocols</td>
<td>465</td>
</tr>
<tr>
<td>13.1.1 Routing protocols</td>
<td>468</td>
</tr>
<tr>
<td>13.1.2 Reactive protocols</td>
<td>472</td>
</tr>
<tr>
<td>13.2 Hybrid Routing Protocol</td>
<td>485</td>
</tr>
<tr>
<td>13.2.1 Loop-back termination</td>
<td>487</td>
</tr>
<tr>
<td>13.2.2 Early termination</td>
<td>488</td>
</tr>
<tr>
<td>13.2.3 Selective broadcasting (SBC)</td>
<td>489</td>
</tr>
<tr>
<td>13.3 Scalable Routing Strategies</td>
<td>491</td>
</tr>
<tr>
<td>13.3.1 Hierarchical routing protocols</td>
<td>491</td>
</tr>
<tr>
<td>13.3.2 Performance examples</td>
<td>494</td>
</tr>
<tr>
<td>13.3.3 FSR (fisheye routing) protocol</td>
<td>496</td>
</tr>
<tr>
<td>13.4 Multipath Routing</td>
<td>497</td>
</tr>
<tr>
<td>13.5 Clustering Protocols</td>
<td>501</td>
</tr>
<tr>
<td>13.5.1 Introduction</td>
<td>501</td>
</tr>
<tr>
<td>13.5.2 Clustering algorithm</td>
<td>503</td>
</tr>
<tr>
<td>13.5.3 Clustering with prediction</td>
<td>505</td>
</tr>
<tr>
<td>13.6 Cashing Schemes for Routing</td>
<td>512</td>
</tr>
<tr>
<td>13.6.1 Cache management</td>
<td>514</td>
</tr>
<tr>
<td>13.7 Distributed QoS Routing</td>
<td>520</td>
</tr>
<tr>
<td>13.7.1 Wireless links reliability</td>
<td>521</td>
</tr>
<tr>
<td>13.7.2 Routing</td>
<td>521</td>
</tr>
<tr>
<td>13.7.3 Routing information</td>
<td>521</td>
</tr>
<tr>
<td>13.7.4 Token-based routing</td>
<td>522</td>
</tr>
<tr>
<td>13.7.5 Delay-constrained routing</td>
<td>523</td>
</tr>
<tr>
<td>13.7.6 Tokens</td>
<td>524</td>
</tr>
<tr>
<td>13.7.7 Forwarding the received tokens</td>
<td>525</td>
</tr>
<tr>
<td>13.7.8 Bandwidth-constrained routing</td>
<td>525</td>
</tr>
<tr>
<td>13.7.9 Forwarding the received tickets</td>
<td>526</td>
</tr>
<tr>
<td>13.7.10 Performance example</td>
<td>527</td>
</tr>
<tr>
<td>References</td>
<td>530</td>
</tr>
</tbody>
</table>

14 Sensor Networks | 535 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>535</td>
</tr>
<tr>
<td>14.2 Sensor Networks Parameters</td>
<td>537</td>
</tr>
<tr>
<td>14.2.1 Pre-deployment and deployment phase</td>
<td>538</td>
</tr>
<tr>
<td>14.2.2 Post-deployment phase</td>
<td>538</td>
</tr>
<tr>
<td>14.2.3 Re-deployment of additional nodes phase</td>
<td>539</td>
</tr>
</tbody>
</table>