A NETWORKING APPROACH TO GRID COMPUTING

DANIEL MINOLI
Managing Director
Leading-Edge Networks Incorporated
A NETWORKING APPROACH TO GRID COMPUTING
A NETWORKING APPROACH TO GRID COMPUTING

DANIEL MINOLI
Managing Director
Leading-Edge Networks Incorporated
For Anna, Emma, Emile, Gabrielle, Gino, Angela, and Peter
Contents

About the Author xiii
Preface xv
Acknowledgments xvii

1 Introduction 1
1.1 What Is Grid Computing And What Are The Key Issues? 1
1.2 Potential Applications and Financial Benefits of Grid Computing 10
1.3 Grid Types, Topologies, Components, and Layers—A Preliminary View 13
1.4 Comparison with Other Approaches 21
1.5 A First Look at Grid Computing Standards 24
1.6 A Pragmatic Course of Investigation 27

2 Grid Benefits and Status of Technology 31
2.1 Motivations for Considering Computational Grids 31
2.2 Brief History of Computing, Communications, and Grid Computing 38
Communication 44
Computation 46
Grid Technology 47
2.3 Is Grid Computing Ready for Prime Time? 47
2.4 Early Suppliers and Vendors 51
2.5 Possible Economic Value 53
2.5.1 Possible Economic Value: One State’s Positioning 53
2.5.2 Possible Economic Value: Extrapolation 56
2.6 Challenges 56

3 Components of Grid Computing Systems and Architectures 63
3.1 Overview 63
3.2 Basic Constituent Elements—A Functional View 71
Portal/User Interface Function/Functional Block 85
The Grid Security Infrastructure: User Security Function/Functional Block 75
CONTENTS

Node Security Function/Functional Block 76
Broker Function/Functional Block and Directory 76
Scheduler Function/Functional Block 77
Data Management Function/Functional Block 78
Job Management And Resource Management Function/Functional Block 78
User/Application Submission Function/Functional Block 79
Resources 79
Protocols 80

3.3 Basic Constituent Elements—A Physical View 81
Networks 81
Computation 84
Storage 85
Scientific Instruments 90
Software and licenses 91

3.4 Basic Constituent Elements—Service View 91

4 Standards Supporting Grid Computing: OGSI 101

4.1 Introduction 104
4.2 Motivations for Standardization 109
4.3 Architectural Constructs 113
 4.3.1 Definitions 113
 4.3.2 Protocol Perspective 115
 4.3.3 Going From “Art” To “Science” 123
4.4 What is OGSA/OGSI? A Practical View 125
4.5 OGSA/OGSI Service Elements and Layered Model 129
 4.5.1 Key Aspects 129
 4.5.2 Ancillary Aspects 132
 4.5.3 Implementations of OGSI 136
4.6 What is OGSA/OGSI? A More Detailed View 139
 4.6.1 Introduction 139
 4.6.2 Setting the Context 140
 4.6.3 The Grid Service 145
 4.6.4 WSDL Extensions and Conventions 145
 4.6.5 Service Data 146
 4.6.6 Core Grid Service Properties 149
 4.6.7 Other Details 151
4.7 A Possible Application of OGSA/OGSI to Next-Generation Open-Source Outsourcing 151
 4.7.1 Opportunities 151
 4.7.2 Outsourcing Trends 151

5 Standards Supporting Grid Computing: OGSA 155

5.1 Introduction 156
5.2 Functionality Requirements 158
5.2.1 Basic Functionality Requirements 159
5.2.2 Security Requirements 160
5.2.3 Resource Management Requirements 161
5.2.4 System Properties Requirements 162
5.2.5 Other Functionality Requirements 163

5.3 OGSA Service Taxonomy 164
5.3.1 Core Services 166
5.3.2 Data Services 168
5.3.3 Program Execution 169
5.3.4 Resource Management 173

5.4 Service Relationships 173
5.4.1 Service Composition 174
5.4.2 Service Orchestration 175
5.4.3 Types of Relationships 176
5.4.4 Platform Services 176

5.5 OGSA Services 177
5.5.1 Handle Resolution 177
5.5.2 Virtual Organization Creation and Management 178
5.5.3 Service Groups and Discovery Services 178
5.5.4 Choreography, Orchestrations and Workflow 180
5.5.5 Transactions 180
5.5.6 Metering Service 181
5.5.7 Rating Service 182
5.5.8 Accounting Service 182
5.5.9 Billing and Payment Service 182
5.5.10 Installation, Deployment, and Provisioning 183
5.5.11 Distributed Logging 183
5.5.12 Messaging and Queuing 184
5.5.13 Event 186
5.5.14 Policy and Agreements 187
5.5.15 Base Data Services 188
5.5.16 Other Data Services 190
5.5.17 Discovery Services 191
5.5.18 Job Agreement Service 192
5.5.19 Reservation Agreement Service 192
5.5.20 Data Access Agreement Service 193
5.5.21 Queuing Service 193
5.5.22 Open Grid Services Infrastructure 193
5.5.23 Common Management Model 195

5.6 Security Considerations 196
5.7 Examples of OGSA Mechanisms in Support of VO Structures 197

6 Grid System Deployment Issues, Approaches, and Tools 201
6.1 Generic Implementations: Globus Toolkit 201
6.1.1 Globus Toolkit tools and APIs 203
9.2 MPLS Technology
 9.2.1 Approaches
 9.2.2 MPLS Operation
 9.2.3 Key Mechanisms Supporting MPLS
 9.2.4 Service Availability

10 Communication Systems for Global Grids
 10.1 The Basics of Layer 2 and Layer 3 VPNs
 10.2 The Layer 3 Approach
 10.3 Layer 2 MPLS VPNs-A Different Philosophy
 10.4 Which Works Better Where?
 10.5 A Grid Computing Application

References
Glossary
Index
Daniel Minoli has many years of IT, telecom, and networking experience for end users and carriers, including work at AIG, ARPA think tanks, Bell Telephone Laboratories, ITT, Prudential Securities, Bell Communications Research (Bellcore/Telcordia), and AT&T (1975–2001). Recently, he also played a founding role in the launching of two networking companies through the high-tech incubator Leading Edge Networks Inc., which he ran in the early 2000s: Global Wireless Services, a provider of broadband, hotspot mobile Internet and hotspot VoIP (Vo Wi-Fi) services to high-end marinas; and, InfoPort Communications Group, an optical and Gigabit Ethernet metropolitan carrier supporting data center/SAN/channel extension and grid computing network access services (2001–2003). Mr. Minoli’s grid computing work goes back to 1987.

An author of a number of textbooks on information technology, telecommunications, and data communications, he has also written columns for ComputerWorld, NetworkWorld, and Network Computing (1985–1995). He has taught at New York University, Rutgers University, Stevens Institute of Technology, Carnegie Mellon University, and Monmouth University (1984–2003). Also, he was a Technology Analyst At-Large, for Gartner/DataPro (1985–2001); based on extensive hands-on work at financial firms and carriers, he tracked technologies and wrote around fifty distinct CTO/CIO-level technical/architectural scans in the area of telephony and data systems, including topics on security, disaster recovery, IT outsourcing, network management, LANs, WANs (ATM and MPLS), wireless (LAN and public hotspot), VoIP, network design/economics, carrier networks (such as metro Ethernet and CWDM/DWDM), and e-commerce. Over the years, he has advised venture capitalists for investments of $150M in a dozen high-tech companies, and has acted as expert witness in a (won) $11B lawsuit regarding a wireless air-to-ground communication system.