Introduction to UAV Systems

Fourth Edition

Paul Gerin Fahlstrom
UAV Manager US Army Material Command (ret)

Thomas James Gleason
Gleason Research Associates, Inc

Unmanned Aerial Vehicles (UAVs) have been widely adopted in the military world over the last decade and the success of these military applications is increasingly driving efforts to establish unmanned aircraft in non-military roles.

Introduction to UAV Systems, Fourth Edition provides a comprehensive introduction to all of the elements of a complete Unmanned Aircraft System (UAS). It addresses the air vehicle, mission planning and control, several types of mission payloads, data links and how they interact with mission performance, and launch and recovery concepts. This book provides enough information to encourage a student to learn more; to provide a specialist with a basic appreciation of the technical issues that drive other parts of the system and interact with their specialty; or to help a program manager understand system-level tradeoffs and know what questions to ask.

Key features:
- Comprehensive overview of all elements of a UAS and of how they interact.
- Introduces the underlying concepts of key subsystems.
- Emphasizes system-integration issues and how they relate to subsystem design choices.
- Practical discussion of issues informed by lessons learned in UAV programs.

Introduction to UAV Systems, Fourth Edition is written both for newcomers to the subject and for experienced members of the UAV community who desire a comprehensive overview at the system level.

As well as being a primary text for an introductory course on UAVs or a supplementary text in a course that goes into more depth in one of the individual technologies involved in a UAS, this book is a useful overview for practicing engineers, researchers, managers, and consultants interested in UAV systems.
INTRODUCTION
TO UAV SYSTEMS
Aerospace Series List

Theory of Lift: Introductory Computational Aerodynamics with MATLAB®/Octave
McBain August 2012

Sense and Avoid in UAS: Research and Applications
Angelov April 2012

Morphing Aerospace Vehicles and Structures
Valasek April 2012

Gas Turbine Propulsion Systems
MacIsaac and Langton July 2011

Basic Helicopter Aerodynamics, Third Edition
Seddon and Newman July 2011

Advanced Control of Aircraft, Spacecraft and Rockets
Tewari July 2011

Cooperative Path Planning of Unmanned Aerial Vehicles
Tsourdos et al. November 2010

Principles of Flight for Pilots
Swatton October 2010

Air Travel and Health: A Systems Perspective
Seabridge et al. September 2010

Design and Analysis of Composite Structures: With applications to Aerospace Structures
Kassapoglou September 2010

Unmanned Aircraft Systems: UAVS Design, Development, and Deployment
Austin April 2010

Introduction to Antenna Placement and Installations
Macnamara April 2010

Principles of Flight Simulation
Allerton October 2010

Aircraft Fuel Systems
Langton et al. May 2009

The Global Airline Industry
Belobaba April 2009

Computational Modelling and Simulation of Aircraft and the Environment: Volume 1—Platform Kinematics and Synthetic Environment
Daston April 2009

Handbook of Space Technology
Ley, Wittmann, and Hallmann April 2009

Aircraft Performance Theory and Practice for Pilots
Swatton August 2008

Surrogate Modelling in Engineering Design: A Practical Guide
Forrester, Sobester, and Keane August 2008

Aircraft Systems, Third Edition
Moir and Seabridge March 2008

Introduction to Aircraft Aeroelasticity And Loads
Wright and Cooper December 2007

Stability and Control of Aircraft Systems
Langton September 2006

Military Avionics Systems
Moir and Seabridge February 2006

Design and Development of Aircraft Systems
Moir and Seabridge June 2004

Aircraft Loading and Structural Layout
Howe May 2004

Aircraft Display Systems
Jukes December 2003

Civil Avionics Systems
Moir and Seabridge December 2002
INTRODUCTION TO UAV SYSTEMS
FOURTH EDITION

Paul Gerin Fahlstrom
UAV Manager US Army Material Command (ret)

Thomas James Gleason
Gleason Research Associates, Inc

WILEY
A John Wiley & Sons, Ltd., Publication
This book is dedicated to our wives, Beverly Ann Evans Fahlstrom and Archodessia Glyphis Gleason, who have provided support and encouragement throughout the process of its preparation.
Contents

Preface xv
Series Preface xix
Acknowledgments xxi
List of Acronyms xxiii

Part One Introduction

1 History and Overview 3
1.1 Overview 3
1.2 History 4
1.2.1 Early History 4
1.2.2 The Vietnam War 5
1.2.3 Resurgence 5
1.2.4 Joint Operations 6
1.2.5 Desert Storm 6
1.2.6 Bosnia 6
1.2.7 Afghanistan and Iraq 7
1.3 Overview of UAV Systems 7
1.3.1 Air Vehicle 8
1.3.2 Mission Planning and Control Station 8
1.3.3 Launch and Recovery Equipment 9
1.3.4 Payloads 10
1.3.5 Data Links 10
1.3.6 Ground Support Equipment 11
1.4 The Aquila 11
1.4.1 Aquila Mission and Requirements 12
1.4.2 Air Vehicle 12
1.4.3 Ground Control Station 13
1.4.4 Launch and Recovery 13
1.4.5 Payload 13
1.4.6 Other Equipment 14
1.4.7 Summary 14
References 15
Classes and Missions of UAVs

Overview

Examples of UAV Systems

- **Very Small UAVs**
- **Small UAVs**
- **Medium UAVs**
- **Large UAVs**

Expendable UAVs

Classes of UAV Systems

- **Classification by Range and Endurance**
- **Informal Categories of Small UAV Systems by Size**
- **The Tier System**
- **Another Classification Change**

Missions

Reference

Part Two The Air Vehicle

Basic Aerodynamics

- **Overview**
- **Basic Aerodynamic Equations**
- **Aircraft Polar**
- **The Real Wing and Airplane**
- **Induced Drag**
- **The Boundary Layer**
- **Flapping Wings**
- **Total Air-Vehicle Drag**
- **Summary**

Performance

- **Overview**
- **Climbing Flight**
- **Range**
 - **Range for a Propeller-Driven Aircraft**
 - **Range for a Jet-Propelled Aircraft**
- **Endurance**
 - **Endurance for a Propeller-Driven Aircraft**
 - **Endurance for a Jet-Propelled Aircraft**
- **Gliding Flight**
- **Summary**

Stability and Control

- **Overview**
- **Stability**
Contents ix

5.2.1 Longitudinal Stability 62
5.2.2 Lateral Stability 64
5.2.3 Dynamic Stability 65
5.2.4 Summary 65

5.3 Control 65
5.3.1 Aerodynamic Control 65
5.3.2 Pitch Control 66
5.3.3 Lateral Control 67

5.4 Autopilots 67
5.4.1 Sensor 68
5.4.2 Controller 68
5.4.3 Actuator 68
5.4.4 Airframe Control 68
5.4.5 Inner and Outer Loops 68
5.4.6 Flight-Control Classification 69
5.4.7 Overall Modes of Operation 70
5.4.8 Sensors Supporting the Autopilot 70

6 Propulsion 73
6.1 Overview 73
6.2 Thrust Generation 73
6.3 Powered Lift 75
6.4 Sources of Power 78
6.4.1 The Two-Cycle Engine 78
6.4.2 The Rotary Engine 81
6.4.3 The Gas Turbine 82
6.4.4 Electric Motors 83
6.4.5 Sources of Electrical Power 84

7 Loads and Structures 91
7.1 Overview 91
7.2 Loads 91
7.3 Dynamic Loads 94
7.4 Materials 96
7.4.1 Sandwich Construction 96
7.4.2 Skin or Reinforcing Materials 97
7.4.3 Resin Materials 97
7.4.4 Core Materials 98
7.5 Construction Techniques 98

Part Three Mission Planning and Control

8 Mission Planning and Control Station 101
8.1 Overview 101
8.2 MPCS Architecture 105
8.2.1 Local Area Networks 107
8.2.2 Elements of a LAN 107
8.2.3 Levels of Communication 108
8.2.4 Bridges and Gateways 110

8.3 Physical Configuration 111

8.4 Planning and Navigation 113
8.4.1 Planning 113
8.4.2 Navigation and Target Location 115

8.5 MPCS Interfaces 117

9 Air Vehicle and Payload Control 119
9.1 Overview 119
9.2 Modes of Control 120
9.3 Piloting the Air Vehicle 120
9.3.1 Remote Piloting 121
9.3.2 Autopilot-Assisted Control 121
9.3.3 Complete Automation 122
9.3.4 Summary 123

9.4 Controlling Payloads 123
9.4.1 Signal Relay Payloads 124
9.4.2 Atmospheric, Radiological, and Environmental Monitoring 124
9.4.3 Imaging and Pseudo-Imaging Payloads 125

9.5 Controlling the Mission 126
9.6 Autonomy 128

Part Four Payloads

10 Reconnaissance/Surveillance Payloads 133
10.1 Overview 133
10.2 Imaging Sensors 134
10.2.1 Target Detection, Recognition, and Identification 134

10.3 The Search Process 146
10.4 Other Considerations 152
10.4.1 Stabilization of the Line of Sight 152

References 156
Bibliography 156

11 Weapon Payloads 157
11.1 Overview 157
11.2 History of Lethal Unmanned Aircraft 158
11.3 Mission Requirements for Armed Utility UAVs 161
11.4 Design Issues Related to Carriage and Delivery of Weapons 161
11.4.1 Payload Capacity 161
11.4.2 Structural Issues 162
11.4.3 Electrical Interfaces 163
11.4.4 Electromagnetic Interference 165
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.5 Launch Constraints for Legacy Weapons</td>
<td>165</td>
</tr>
<tr>
<td>11.4.6 Safe Separation</td>
<td>166</td>
</tr>
<tr>
<td>11.4.7 Data Links</td>
<td>166</td>
</tr>
<tr>
<td>11.5 Other Issues Related to Combat Operations</td>
<td>166</td>
</tr>
<tr>
<td>11.5.1 Signature Reduction</td>
<td>166</td>
</tr>
<tr>
<td>11.5.2 Autonomy</td>
<td>176</td>
</tr>
<tr>
<td>Reference</td>
<td>179</td>
</tr>
<tr>
<td>12 Other Payloads</td>
<td>181</td>
</tr>
<tr>
<td>12.1 Overview</td>
<td>181</td>
</tr>
<tr>
<td>12.2 Radar</td>
<td>181</td>
</tr>
<tr>
<td>12.2.1 General Radar Considerations</td>
<td>181</td>
</tr>
<tr>
<td>12.2.2 Synthetic Aperture Radar</td>
<td>183</td>
</tr>
<tr>
<td>12.3 Electronic Warfare</td>
<td>184</td>
</tr>
<tr>
<td>12.4 Chemical Detection</td>
<td>184</td>
</tr>
<tr>
<td>12.5 Nuclear Radiation Sensors</td>
<td>185</td>
</tr>
<tr>
<td>12.6 Meteorological Sensors</td>
<td>185</td>
</tr>
<tr>
<td>12.7 Pseudo-Satellites</td>
<td>186</td>
</tr>
<tr>
<td>Part Five Data Links</td>
<td>191</td>
</tr>
<tr>
<td>13 Data-Link Functions and Attributes</td>
<td>191</td>
</tr>
<tr>
<td>13.1 Overview</td>
<td>191</td>
</tr>
<tr>
<td>13.2 Background</td>
<td>191</td>
</tr>
<tr>
<td>13.3 Data-Link Functions</td>
<td>193</td>
</tr>
<tr>
<td>13.4 Desirable Data-Link Attributes</td>
<td>194</td>
</tr>
<tr>
<td>13.4.1 Worldwide Availability</td>
<td>195</td>
</tr>
<tr>
<td>13.4.2 Resistance to Unintentional Interference</td>
<td>196</td>
</tr>
<tr>
<td>13.4.3 Low Probability of Intercept (LPI)</td>
<td>196</td>
</tr>
<tr>
<td>13.4.4 Security</td>
<td>197</td>
</tr>
<tr>
<td>13.4.5 Resistance to Deception</td>
<td>197</td>
</tr>
<tr>
<td>13.4.6 Anti-ARM</td>
<td>197</td>
</tr>
<tr>
<td>13.4.7 Anti-Jam</td>
<td>198</td>
</tr>
<tr>
<td>13.4.8 Digital Data Links</td>
<td>199</td>
</tr>
<tr>
<td>13.5 System Interface Issues</td>
<td>199</td>
</tr>
<tr>
<td>13.5.1 Mechanical and Electrical</td>
<td>199</td>
</tr>
<tr>
<td>13.5.2 Data-Rate Restrictions</td>
<td>200</td>
</tr>
<tr>
<td>13.5.3 Control-Loop Delays</td>
<td>201</td>
</tr>
<tr>
<td>13.5.4 Interoperability, Interchangeability, and Commonality</td>
<td>202</td>
</tr>
<tr>
<td>Reference</td>
<td>204</td>
</tr>
<tr>
<td>14 Data-Link Margin</td>
<td>205</td>
</tr>
<tr>
<td>14.1 Overview</td>
<td>205</td>
</tr>
<tr>
<td>14.2 Sources of Data-Link Margin</td>
<td>205</td>
</tr>
<tr>
<td>14.2.1 Transmitter Power</td>
<td>205</td>
</tr>
<tr>
<td>14.2.2 Antenna Gain</td>
<td>206</td>
</tr>
<tr>
<td>14.2.3 Processing Gain</td>
<td>213</td>
</tr>
</tbody>
</table>
Contents

14.3 Definition of AJ Margin
 - 14.3.1 Jammer Geometry
 - 14.3.2 System Implications of AJ Capability
 - 14.3.3 Anti-Jam Uplinks

14.4 Propagation
 - 14.4.1 Obstruction of the Propagation Path
 - 14.4.2 Atmospheric Absorption
 - 14.4.3 Precipitation Losses

14.5 Data-Link Signal-to-Noise Budget

References

15 Data-Rate Reduction
 - 15.1 Overview
 - 15.2 Compression Versus Truncation
 - 15.3 Video Data
 - 15.4 Non-Video Data
 - 15.5 Location of the Data-Rate Reduction Function

References

16 Data-Link Tradeoffs
 - 16.1 Overview
 - 16.2 Basic Tradeoffs
 - 16.3 Pitfalls of “Putting Off” Data-Link Issues
 - 16.4 Future Technology

Part Six Launch and Recovery

17 Launch Systems
 - 17.1 Overview
 - 17.2 Basic Considerations
 - 17.3 UAV Launch Methods for Fixed-Wing Vehicles
 - 17.3.1 Rail Launchers
 - 17.3.2 Pneumatic Launchers
 - 17.3.3 Hydraulic/Pneumatic Launchers
 - 17.3.4 Zero Length RATO Launch of UAVs
 - 17.4 Vertical Takeoff and Landing UAV Launch

18 Recovery Systems
 - 18.1 Overview
 - 18.2 Conventional Landings
 - 18.3 Vertical Net Systems
 - 18.4 Parachute Recovery
 - 18.5 VTOL UAVs
 - 18.6 Mid-Air Retrieval
 - 18.7 Shipboard Recovery
Contents

19 Launch and Recovery Tradeoffs 271
19.1 UAV Launch Method Tradeoffs 271
19.2 Recovery Method Tradeoffs 274
19.3 Overall Conclusions 276

Index 277