Sustainable Preservation

Buildings account for nearly forty percent of both total energy use and carbon emissions in the United States. With one of the country’s leading preservation architects as your guide, Sustainable Preservation explores the power of adaptive reuse to reduce those numbers and move us toward sustainability. It shows how an icon such as H.H. Richardson’s Trinity Church in Boston can go green — and why a 1970s strip-mall supermarket not only deserves similar attention but can also emerge as a building that delights users.

Sustainable Preservation takes a nuanced look at the hundreds of choices that adaptive reuse requires architects to make — from ingenious ways to redeploy existing structural elements to time-honored techniques for natural ventilation to creation of wetlands that restore a site’s natural biological functions. In addition, Sustainable Preservation:

• Presents fifty case studies of projects — schools, houses, offices, stores, museums, and government buildings— that set new standards for holistic approaches to adaptive reuse and sustainability
• Covers design issues, from building location to lighting systems, renewable power options, stormwater handling, and building envelope protection and integrity
• Reviews operational issues, including materials choices for low lifetime maintenance, green housekeeping, and indoor air quality
• Explains calculators and programs that supplement the LEED® green building certification program requirements to yield even greater environmental benefits

Sustainable Preservation makes a compelling argument that preservation and sustainability don’t just protect the environment, but deliver a full range of societal benefits, from job creation to stronger social connection.
Sustainable Preservation

Greening Existing Buildings
Sustainable Preservation

Greening Existing Buildings

Jean Carroon, FAIA | Foreword by Richard Moe

John Wiley & Sons, Inc.
I dedicate this book to my late father, Lamar Evan Carroon, a hydraulic engineer who began his career with the U.S. Geological Survey, Surface Water Branch, Water Resources Division in Santa Fe, New Mexico in 1946 and retired in 1980 as District Chief of the Mississippi Water Resources Division. My friend and sister, Barbara Carroon, will understand why.
CONTENTS

FOREWORD xi
Richard Moe

ACKNOWLEDGMENTS xiii

PART 1: OVERVIEW 1

CHAPTER 1
BUILDINGS AND ENVIRONMENTAL STEWARDSHIP—UNDERSTANDING THE ISSUES 3

1.1 Climate Change and Buildings—the Imperative 3
1.2 Historically Green—What Makes Existing Buildings Green 7
1.3 Terminology of Evolving Green Design 12
1.4 Rethinking Assumptions—Holistic Design 17
1.5 There Is No Finish—Creating a Culture of Reuse, Repair, and Renewal 18

CASE STUDIES
People's Food Co-op, Portland, OR 21
Harris Center for Conservation Education, Hancock, NH 25
Trinity Church in the City of Boston, Boston, MA 30
U.S. Naval Academy Historic Academic Group, Annapolis, MD 35
Forbes Park, Chelsea, MA 39

CHAPTER 2
BUILDINGS AND SUSTAINABLE DEVELOPMENT—UNDERSTANDING THE GOALS 43

2.1 Sustainable Development versus Sustainable Design 43
2.2 The Triple Bottom Line—People, Planet, and Profit 44
2.3 The Triple Bottom Line and Historic Preservation 47
2.4 Regional/Community Connectivity 53
2.5 Interwoven History of Sustainability and Historic Preservation 55

CASE STUDIES
CCI Center, Pittsburgh, PA 63
Center for Neighborhood Technology, Chicago, IL 66
Philadelphia Forensic Science Center, Philadelphia, PA 71
Brewers Hill (Natty Boh Building), Baltimore, MD 74
Denver Dry Building, Denver, CO 77

CHAPTER 3
TOOLS, GUIDELINES, AND PROCESS—BALANCING THE GOALS 83

3.1 Balancing Objective and Subjective Goals—Integrated Design 83
CONTENTS

3.2 Green Tools and Metrics—Urban and Campus 88
3.3 Green Tools and Metrics—Building and Site 90
3.4 Historic Property Designation and Treatment Guidelines 95
3.5 Balancing Systems and Guidelines—Whole Building Design 98

CASE STUDIES
Whitaker Street Building, Savannah, GA 103
Alliance Center for Sustainable Colorado, Denver, CO 107
Thoreau Center for Sustainability, San Francisco, CA 111
Gerding Theater (Portland Center Stage), Portland, OR 115
Howard M. Metzenbaum U. S. Courthouse, Cleveland, OH 120

PART II: TARGETED RESOURCE CONSERVATION 125

CHAPTER 4
WATER AND SITE 127
4.1 Water—The Most Precious Commodity 127
4.2 Watersheds, Stormwater, and Site Design 130
4.3 Water and Energy Systems 137
4.4 Water and Mechanical Systems 138
4.5 Water and Sewage Systems 140
4.6 Closing the Circle—Reuse, Management, Education, Delight 141

CASE STUDIES
The Welcome and Admission Center at Roger H. Perry Hall, Champlain College, Burlington, VT 145
Chicago Center for Green Technology, Chicago, IL 149
Blackstone Station Office Renovation, Harvard University, Cambridge, MA 153
Immaculate Heart of Mary Motherhouse, Monroe, MI 157
Lazarus Building, Columbus, OH 160

CHAPTER 5
ENERGY—NOT THE ONLY, ISSUE BUT . . . 167
5.1 Energy Overview 167
5.2 Less Is More—Avoided Impacts 171
5.3 Reducing and Shifting Electrical Loads 175
5.4 The Building Enclosure 182
5.5 Avoiding Silos 188

CASE STUDIES
Cambridge City Hall Annex, Cambridge, MA 190
S.T. Dana Building, U. of Michigan, Ann Arbor, MI 195
Lion House, Bronx Zoo, Bronx, NY 199
Scowcroft Building, Ogden, UT 205
John W. McCormack Federal Building, Boston, MA 210

CHAPTER 6
INDOOR HEALTH—LIGHT, AIR, AND HEALTH 217
6.1 Indoor Air Pollution 217
6.2 Air Quality and Ventilation 220
6.3 Light and Connections to Nature 222
6.4 Healthy Spaces and Productivity 224
6.5 Renewal and Delight 229
CASE STUDIES
AIA Honolulu, Honolulu, HI 231
Boulder Associates Office, Boulder, CO 233
NRDC Southern California Office (Robert Redford Building), CA 236
Alberici Corporate Headquarters, Overland, MO 240
Montgomery Park Business Center, Baltimore, MD 244

CHAPTER 7
MATERIALS AND RESOURCES—REDUCE, REPAIR, REUSE, RECYCLE 251
7.1 Consumption and Waste—A Throwaway Culture 251
7.2 Diverting Waste—Reuse, Recycle, Downcycle 255
7.3 Identifying Better Products 257
7.4 Resource Optimization—Extending Service Life 260
7.5 Changing Priorities Ahead—Respecting both Past and Future 262

CASE STUDIES
StopWaste, Oakland, CA 264
The Barn at Fallingwater, Mill Run, PA 268
Pittsburgh Glass Center, Pittsburgh, PA 272
North Dakota State University School of Visual Arts & Architecture, Fargo, ND 277
Children’s Museum of Pittsburgh Expansion, Pittsburgh, PA

PART III: OF SPECIAL NOTE 289

CHAPTER 8
BEST PRACTICES—OPERATIONS, MAINTENANCE, AND CHANGE 291
8.1 Opportunities—Essential and Immediate 291
8.2 Implementation Tools 294
8.3 Housekeeping—Continual Improvement 297
8.4 O & M—the User Impact 301
8.5 Best Practice—Facilitating Change 303

CASE STUDIES
St. Stephen’s Episcopal K-8 School, Harrisburg, PA 307
Candler Library Renovation, Emory University, Atlanta, GA 311
Jean Vollum Natural Capital Center, Portland, OR 315
Eastern Village Cohousing Condominiums, Silver Spring, MD 320
Felician Sisters Convent and School, Coraopolis, PA 324

CHAPTER 9
HOUSES 329
9.1 Houses—The Impact of Our Choices 329
9.2 Energy Conservation, Envelope, and Alternative Energy 331
9.3 Holistic Water Conservation 334
9.4 Materials—Reduce, Reuse, Recycle, Repair, and Renew 339
9.5 Changing Behavior and Options—Living Sustainably 341

CASE STUDIES
Hanvey House, North Vancouver, BC 342
Solar Umbrella House, Venice, CA 345
Capitol Hill House, Seattle, WA 351
Adeline Street Urban Salvage Project, Berkeley, CA 354
Chicago Bungalows, Chicago, IL 358
CHAPTER 10
THE RECENT PAST ________________ 363
10.1 The Recent Past—Modern Architecture, Boomer Buildings 363
10.2 Preservation Challenges 366
10.3 Environmental Dilemmas 367
10.4 Strategies for Renewal 368
10.5 Lessons Learned 373

CASE STUDIES
Karges-Faulconbridge Office Building,
Roseville, MN 374
Crown Hall, Chicago, IL 377
North Boulder Recreation Center, Boulder, CO 381
California College of the Arts, San Francisco,
CA 384
Vancouver Island Technology Park, Victoria, BC 387

INDEX 393
IN JUST A FEW SHORT YEARS, the topic of sustainable development has moved from the sidelines to center stage in discussions about climate change, social equity, and economic prosperity—issues that will shape the very future of our planet. This focus on sustainability has enormous implications for historic preservation. It challenges us to think in new ways about the process by which we decide what to protect and how to protect it, about the real economic benefits of our work, and—most important—about the vital role our historic resources can play in reducing our impact on the environment.

By the same token, the practice of historic preservation has profound implications for sustainable development. As champions of wise stewardship of our legacy from the past, preservationists are particularly adept at thinking about the long-term survivability of buildings and how they can be carefully maintained, innovatively reused, and thoughtfully preserved for future generations to enjoy—tasks that represent the very essence of sustainability.

It’s easy to forget that every manmade thing in our lives—the computers we rely on, the plastic bottles and aluminum cans we drink from, the buildings in which we live and work—all of them take significant resources to manufacture. Despite the high environmental price we pay for them, we too often think of these things as expendable: Last year’s computer gets replaced by a newer model, the plastic bottle gets tossed into the waste basket, the building gets razed to make way for something newer and “better”—all of it done with little regard for the impact of these actions on the world around us. For too long, our attitude toward our natural resources has been, “There’s plenty more where that came from.” Now, with our environment in crisis, we have to face the fact that there may not be “plenty more” of anything—except trouble.

Consider the ubiquitous plastic water bottle, which has become a symbol of our foolish, callous, and self-destructive treatment of the environment. Despite the fact that good water comes gushing out of faucets everywhere, use of plastic water bottles increased an amazing 1,000 percent between 1997 and 2006. We could recycle these containers, recovering at least some of the energy and materials that went into their manufacture—but the reality is that eight out of ten plastic bottles wind up in landfills. A new understanding is beginning to take hold: Reuse is environmentally superior to recycling. In terms of environmental impact, it’s far better to buy a reusable water bottle than to buy an endless stream of plastic containers that may or (more likely) may not get recycled.

The same holds true for construction materials and demolition debris. Recent years have seen an exponential increase in the recycling of these materials—but still, a small portion of building materials gets recycled every year. The rest still winds up in landfills that are rapidly filling up. The conclusion is obvious: Instead of demolishing and replacing a building, it’s better to reuse it and avoid creating all that construction/demolition debris in the first place.
Sadly, reuse isn’t always easy. Just like disposable plastic containers, much of our postwar building stock was not designed to last. The Brookings Institution projects that by 2035, we will demolish and rebuild approximately 30 percent of our building stock—a staggering 82 billion square feet. This orgy of demolition and reconstruction will be enormously costly, both economically and environmentally, but the fact is that many of those existing buildings will need to be demolished because they’re so poorly constructed. “They don’t make them like they used to” is more than an empty phrase: It’s an indictment of our thoughtlessness—and a mistake we simply can’t afford to keep making.

This points up an important fact: In addition to underscoring the wisdom of reusing existing resources, historic preservation offers some valuable lessons on how we should design our new buildings and communities.

Generally speaking, older buildings employ designs and techniques that grew out of the lessons learned from centuries of tried-and-true building practice. In addition, most of them were constructed so that their individual components—such as windows, for example—can be easily repaired or replaced when necessary. Most important, unlike their more recent counterparts that celebrate the concept of planned obsolescence, older buildings were generally built to last. Because of their durability and “repairability,” they have almost unlimited renewability.

There’s also much to be learned from traditional communities that were constructed before the automobile took over our lives. Because they demonstrate a respect for traditional practices that allow manmade structures to exist in harmony with the natural environment, these places offer a vision for how our cities and towns should function in a post-auto-dependent world. No wonder smart-growth advocates and new urbanists embrace the principles these communities embody.

We’ve always insisted that preservation makes sense, and today that statement is truer than ever. This is not to say that preservationists can rest on their laurels. We still have plenty of work to do. Here’s one very important example: While many historic buildings are remarkably energy-efficient, many others—especially older homes—are poor energy performers. We must continue to work on practical strategies for improving the performance of these buildings without compromising or destroying the distinctive character that makes them so appealing.

Happily, an increasing number of green historic rehabilitation projects show we can do just that. Jean Carroon’s book Sustainable Preservation: Greening Existing Buildings offers case studies that show how a wide range of buildings—from historic icons such as H.H. Richardson’s monumental Trinity Church in Boston to modest structures of more recent vintage in communities all over America—can “go green.” As one of the country’s most experienced and highly regarded preservation architects, with a particular commitment to, and passion for, sensitive stewardship of both the natural and built environments, she is uniquely qualified to explain and illuminate the sometimes-complex relationship between preservation and sustainability.

For some time, preservationists have insisted that in many cases, the greenest building is one that already exists. Now that message is beginning to be heard—and, more important, heeded. Historic preservation has always sustained America by working to protect and celebrate the evidence of its past. Now, by addressing the challenges of climate change, dwindling resources and environmental degradation, preservation can—and must—play a leadership role in the sustainable stewardship of America’s future.

Richard Moe
President Emeritus
National Trust for Historic Preservation
“If you look at the science about what is happening on earth and aren’t pessimistic, you don’t understand the data. But if you meet the people who are working to restore this earth and the lives of the poor, and you aren’t optimistic, you haven’t got a pulse.”

—Paul Hawken, commencement address to the class of 2009, University of Portland

ACKNOWLEDGMENTS

MY THANKS TO ALL OF THE PEOPLE across the globe who recognize that heritage and stewardship are essential for a sustainable world and are working hard to make this happen, whether by celebrating the stories of one building or crafting policy that shifts our economic structure to one of repair rather than replace. You empower me with optimism through your actions.

To the many teams that created the case studies in this book and to all of the others I could not use but learned from, thank you. To all of the practitioners I have been privileged to work with, including many great clients and great teams, I extend heartfelt thanks for my education and growth as a practitioner. Lisa Howe was and is an invaluable sounding board, friend and ally in achieving the highest levels of excellence in Goody Clancy’s preservation practice and sustainability goals. To my fellow principals and the staff of Goody Clancy who felt “the book” was a never-ending story, thank you for your patience and support. In particular, I could not have started without Kathryn Bossack’s initial work on case studies and images, and I could not have finished without Steve Wolf’s endless patience with the illustrations and text and Jennifer Gaugler’s willingness to help pursue missing pieces. Thanks to the team at Wiley for making this happen, and particularly to John Czarnecki for his persistent belief in the topic and to Amy Odum for her grace and humor.

In the public sector, the publications and leadership of the U. S. General Services Administration were and are invaluable. In the private sector, I relied on the very thorough Building Design + Construction white papers edited by Robert Cassidy and am heartened by Rob’s clear understanding that how we address and maintain our existing buildings is crucial in the race to mitigate climate change. Time and again I turned to the dependable and thoughtful information provided by BuildingGreen through their original publications and more recent partnership with McGraw-Hill Construction in the form of GreenSource magazine. The BuildingGreen website continues to be the go-to place for case studies and product information and LEEDuser.com provides essential guidance for the U. S. Green Building Council’s LEED rating systems. The beautifully written Women in Green: Voices of Sustainable Design, by Kira Gould and Lance Hosey, was where I garnered inspiration and comfort. Anything Kira or Lance writes is worth finding; a joint effort is a bonus.