Advanced Dynamic-system Simulation
Model-replication Techniques and Monte Carlo Simulation

Granino A. Korn
University of Arizona
Tucson, Arizona
Advanced Dynamic-system Simulation
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Advanced Dynamic-system Simulation
Model-replication Techniques and Monte Carlo Simulation

Granino A. Korn
University of Arizona
Tucson, Arizona
Contents

Preface
xxiii

Chapter 1. Introduction to Dynamic-system Simulation
1

DYNAMIC-SYSTEM MODELS AND COMPUTER PROGRAMS
1

1-1. Computer Modeling and Simulation
1

1-2. Differential-equation Models
2

1-3. Interactive Modeling—Experiment Protocol and Simulation Studies
3

1-4. Simulation Software
4

1-5. OPEN DESIRE and DESIRE
4

HOW A SIMULATION RUN WORKS
5

1-6. Sampling the DYNAMIC Segment Variables
5

1-7. Numerical Integration
10

(a) Euler Integration
10

(b) Improved Integration Rules
10

1-8. Sampling Times and Integration Steps
11

1-9. Sorting Defined-variable Assignments
12

EXAMPLES OF SIMPLE APPLICATIONS
12

1-10. Oscillators and Computer Displays
12

(a) A Linear Harmonic Oscillator
12

(b) A Nonlinear Oscillator and Duffing’s Differential Equation
15

1-11. Space Vehicle Orbits—Variable-step Integration
15

1-12. A Population-dynamics Model
18

1-13. Splicing Multiple Simulation Runs: Billiard-ball Simulation
20
CONTROL-SYSTEM EXAMPLES

1-14. An Electrical Servomechanism with Motor Field
 Delay and Saturation 22
1-15. Control-system Frequency Response 24
1-16. Simulation of a Simple Guided Missile
 (a) A Guided Torpedo 25
 (b) The Complete Simulation Program 28

WHAT DO WE DO WITH ALL THIS? 29
1-17. Simulation Studies in the Real World: A Word of Caution 29

REFERENCES 30

Chapter 2. Models with Difference Equations, Limiters, and Switches 32

SAMPLED-DATA ASSIGNMENTS AND DIFFERENCE EQUATIONS 32
 2-1. Sampled-data Difference Equation Systems 32
 2-2. “Incremental” Form of Simple Difference Equations 34
 2-4. A Simple Example 36
 2-5. Initializing and Resetting Sampled-data Variables 38

EXAMPLES OF MIXED CONTINUOUS/SAMPLED-DATA SYSTEMS 38
 2-6. The Guided Torpedo with Digital Control 38
 2-7. Simulation of a Plant with a Digital PID Controller 40

MODELING LIMITERS AND SWITCHES 42
 2-8. Limiters, Switches, and Comparators 42
 (a) Limiter Functions 42
 (b) Switching Functions and Comparators 42
 2-9. Numerical Integration of Switch and Limiter Outputs,
 Event Prediction, and Display Problems 45
 2-10. Using Sampled-data Assignments 46
 2-11. Using the step Operator and Heuristic Integration-step Control 46
 2-12. Example: Simulation of a Bang-bang Servomechanism 47

LIMITERS, SWITCHES, AND DIFFERENCE EQUATIONS 49
 2-13. Limiters, Absolute Value, and Maximum/Minimum Selection 49
 2-14. Output-limited Integration 50
 2-15. Modeling Signal Quantization 50
 2-16. Continuous-variable Difference Equations with Switching and
 Limiter Operations 51
 (a) Introduction 51
 (b) Track-hold Simulation 52
 (c) Maximum- and Minimum-value Holding 53
(d) Simple Backlash and Hysteresis Models
(e) The Comparator with Hysteresis (Schmitt Trigger)

2-17. Signal Generators and Signal Modulation

REFERENCES

Chapter 3. Programs with Vector/Matrix Operations and Submodels

VECTOR ASSIGNMENTS AND VECTOR DIFFERENTIAL EQUATIONS
3-1. Arrays, Subscripted Variables, and State-variable Declarations
3-2. Vector Operations in DYNAMIC Program Segments—
 The Vectorizing Compiler
 (a) Vector Assignments and Vector Expressions
 (b) Vector Differential Equations
 (c) Vectorization and Model Replication—Significant Applications
3-3. Matrix-vector Products in Vector Expressions
 (a) Definition
 (b) A Simple Example: Resonating Oscillators
3-4. Vector Sampled-data Assignments and Vector Difference Equations
3-5. Sorting Vector and Subscripted-variable Assignments

MORE VECTOR OPERATIONS
3-6. Index-shifted Vectors
3-7. Sums, DOT Products, and Vector Norms
 (a) Sums and DOT Products
 (b) Euclidean, Taxicab, and Hamming Norms
3-8. Maximum/Minimum Selection and Masking
 (a) Maximum/Minimum Selection
 (b) Masking Vector Expressions

MATRIX OPERATIONS
3-9. Matrix Operations in Experiment-protocol Scripts
3-10. Matrix Assignments and Difference Equations in DYNAMIC Program Segments
3-11. Vector and Matrix Operations using Equivalent Vectors

VECTORS IN PHYSICS AND CONTROL-SYSTEM PROBLEMS
3-12. Vectors in Physics Problems
3-13. Simulation of a Nuclear Reactor
3-14. Linear Transformations and Rotation Matrices
3-15. State-equation Models for Linear Control Systems

USER-DEFINED FUNCTIONS AND SUBMODELS
3-16. User-defined Functions
Chapter 5. Random-process Simulation and Monte Carlo Studies with Noisy Signals

COMPUTER MODELS OF NOISE PROCESSES

5-1. Noise in DYNAMIC Program Segments
5-2. Sampled-data Random Processes
 (a) A Platform for Sampled-data Experiments
 (b) A Sampled-data Random Process Model: Coin Tossing
 (c) Recursive Sampled-data Addition and Time Averaging

5-3. Modeling Continuous Noise
 (a) Deriving “Continuous” Noise from Periodic Pseudorandom Samples
 (b) “Continuous” Time Averages

5-4. Problems with Simulated Noise

MONTE CARLO SIMULATION WITH NOISY SIGNALS

5-5. Gambling Returns
5-6. A Continuous Random Walk
5-7. The 1776 Cannonball with Air Turbulence

SIMULATION OF NOISY CONTROL SYSTEMS

5-8. Monte Carlo Simulation of a Nonlinear Servomechanism: A Noise-input Test
5-9. Monte Carlo Study of Control-system Errors Caused by Noise

ADDITIONAL TOPICS

5-10. Monte Carlo Optimization
5-12. An Alternative to Monte Carlo Simulation
 (a) Introduction
 (b) Dynamic Systems with Random Perturbations
 (c) Mean Square Errors in Linearized Systems

REFERENCES

Chapter 6. Vector Models of Neural Networks

NEURAL-NETWORK SIMULATION

6-1. Neural-network Models and Pattern Vectors
6-2. Simple Vector Operations Model Neural-network Layers
6-3. Normalizing and Contrast-enhancing Neuron Layers
6-4. Multilayer Networks
6-5. Exercising a Neural-network Model
 (a) Computing Successive Neuron Layer Outputs
 (b) Using Pattern-row Matrices
 (c) Pattern Input from Files

REFERENCES
Chapter 7. More Applications of Vector Models

A VECTORIZED SIMULATION WITH LOGARITHMIC PLOTS
7-1. The EUROSIM No. 1 Benchmark Problem
7-2. Vectorized Simulation with Logarithmic Plots

MODELING FUZZY-LOGIC FUNCTION GENERATORS
7-3. Rule Tables Specify Heuristic Functions
7-4. Fuzzy-set Logic
 (a) Fuzzy Sets and Membership Functions
 (b) Fuzzy Intersections and Unions
 (c) Joint Membership Functions
 (d) Normalized Fuzzy-set Partitions
7-5. Fuzzy-set Rule Tables and Function Generators
7-6. Simplified Function Generation with Fuzzy Basis Functions
7-7. Vector Models of Fuzzy-set Partitions
 (a) Gaussian Bumps—Effects of Normalization
 (b) Triangle Functions
 (c) Smooth Fuzzy Basis Functions
7-8. Vector Models for Multidimensional Fuzzy-set Partitions
7-9. Example: Fuzzy-logic Control of a Servomechanism
 (a) Problem Statement
 (b) Experiment Protocol and Rule Table
 (c) DYNAMIC Program Segment and Results

PARTIAL DIFFERENTIAL EQUATIONS
7-10. The Method of Lines
7-11. The Vectorized Method of Lines
 (a) Introduction
 (b) Using Differentiation Operators
 (c) Numerical Problems
7-12. The Heat-conduction Equation in Cylindrical Coordinates
xii Contents

7-13. Generalizations 192
7-14. A Simple Heat-exchanger Model 194

REPLICATION OF AGROECOLOGICAL MODELS ON MAP GRIDS 197
7-15. A Geographical Information System 197
7-16. Modeling the Evolution of Landscape Features 197

REFERENCES 199

Appendix 201

ADDITIONAL REFERENCE MATERIAL 201
A-1. Example of a Radial-basis-function Network 201
A-2. A Fuzzy-basis-function Network 203
A-3. The CLEARN Algorithm 205

REFERENCES 206

PROGRAMS IN THE BOOK CD 210

STREAMLINED OPERATION OF DESIRE PROJECTS UNDER LINUX 210

Index 213
Simulation is experimentation with models. This book describes new computer programs for interactive modeling and simulation of dynamic systems, such as aerospace vehicles, control systems, and biological systems. Simulation studies for design or research can involve many hundreds of model changes, so programming must be convenient, and computations must be as fast as possible.

This book is about advanced simulation programming and describes many new techniques. We provide only a brief review of routine simulation programming but demonstrate computer software for remarkably fast and respectably large simulation studies on inexpensive personal computers or workstations. For hands-on experiments, the enclosed CD contains an industrial-strength software package rather than a toy demonstration program.\(^1\)

\(^1\)OPEN DESIRE solves up to 40,000 ordinary differential equations under Linux, and up to 20,000 differential equations under Microsoft Windows\(^\text{TM}\), so that one can implement respectable vectorized Monte Carlo studies. The DESIRE language, widely used since 1985, accepts scalar and vector differential equations and difference equations in a natural mathematical notation, for example,

\[
\frac{dx}{dt} = -x \cdot \cos(w \cdot t) + 2.22 \cdot a \cdot x \\
\text{Vector } y = A \cdot x + B \cdot u
\]

Programs entered in editor windows immediately compile, execute, and produce solution displays. The program in the book CD allows the user to experiment with all the examples in the text. The Open Source programs in the book CD include binary and source code and a comprehensive reference manual. The Linux version can be recompiled for other Unix-type systems, including Solaris\(^\text{©}\) and Cygwin (Unix under Windows\(^\text{©}\)).