Recommendations of the Committee for Waterfront Structures Harbours and Waterways EAU 2004

8th Edition

Ernst & Sohn
A Wiley Company
Members of the Committee for Waterfront Structures

At present the working committee “Waterfront Structures” has the following members:

Professor Dr.-Ing. Werner Richwien, Essen, Chairman
Baudirektor Dipl.-Ing. Michael Behrendt, Bonn
Project Manager Ir. Jacob Gerrit de Gijt, Rotterdam
Prof. Dr.-Ing. Jürgen Grabe, Hamburg
Baudirektor Dr.-Ing. Michael Heibaum, Karlsruhe
Professor Dr.-Ing. Stefan Heimann, Berlin
Managing Director Ir. Aad van der Horst, Gouda
Dipl.-Ing. Hans-Uwe Kalle, Hagen
Professor Dr.-Ing. Roland Krengel, Dortmund
Dipl.-Ing. Karl-Heinz Lambertz, Duisburg
Dr.-Ing. Christoph Miller, Hamburg
Dr.-Ing. Karl Morgen, Hamburg
Managing Director Dr.-Ing. Friedrich W. Oeser, Hamburg
Managing Director Dipl.-Ing. Emile Reuter, Luxemburg
Managing Director Dr.-Ing. Peter Ruland, Hamburg
Dr.-Ing. Wolfgang Schwarz, Schrobenhausen
Leitender Baudirektor Dr.-Ing. Hans Werner Vollstedt, Bremerhaven
Preface to the 8th Revised Edition

This, the 8th English edition of the Recommendations of the Committee for Waterfront Structures, in the translation of the 10th German edition of the recommendations, which was published at the end of 2004. Now the full revision of the collected published recommendations which began with EAU 1996 is concluded. The concept of partial safety factors stipulated in EC 7 and DIN 1054 has been incorporated in the EAU’s methods of calculation. At the same time, the revised recommendations also take account of all the new standards and draft standards that have also been converted to the concept of partial safety factors and had been published by mid-2004. Like with EAU 1996, further details concerning the implementation of the partial safety factor concept can be found in section 0. The incorporation of the partial safety factor concept of DIN 1054 called for a fundamental reappraisal of the methods of calculation and design for sheet piling structures contained in sections 8.2 to 8.4 and the methods of calculation for sheet piles contained in section 13. Extensive comparative calculations had to be carried out to ensure that the established safety standard of the EAU was upheld when using methods of analysis according to the concept of partial safety factors. This has been achieved by adapting the partial safety factors and by specifying redistribution diagrams for active earth pressure. The use of the new analysis concept for the design of sheet piling structures therefore results in component dimensions similar to those found by designs to EAU 1990.

Now that the inclusion of the European standardisation concept has been concluded, the 10th German edition of the EAU (and hence also the 8th English edition) satisfies the requirements for notification by the EU Commission. It is therefore registered with the EU Commission under Notification No. 2004/305/D.

A component of the notification is the principle of “mutual recognition”, which must form the basis of contracts in which the EAU or individual provisions thereof form part of the contract. This principle is expressed as follows: “Products lawfully manufactured and/or marketed in another EC Member State or in Turkey or in an EFTA State that is a contracting party to the Agreement on the European Economic Area that do not comply with these technical specifications shall be treated as equivalent – including the examinations and supervisory measures carried out in the country of manufacture – if they permanently achieve the required level of protection regarding safety, health and fitness for use.”
The following members of the working committee have been involved with the German edition EAU 2004 since the summer of 2000.

Prof. Dr.-Ing. Dr.-Ing. E. h. Victor Rizkallah, Hannover (Chairman)
Dipl.-Ing. Michael Behrendt, Bonn (since 2001)
Ir. Jakob Gerrit de Gijt, Rotterdam
Dr.-Ing. Hans Peter Dücker, Hamburg
Dr.-Ing. Michael Heibaum, Karlsruhe
Dr.-Ing. Stefan Heimann, Bremen/Berlin (since 2002)
Dipl.-Ing. Wolfgang Hering, Rostock
Dipl.-Ing. Hans-Uwe Kalle, Hagen (since 2002)
Prof. Dr.-Ing. Roland Krengel, Dortmund (since 2004)
Dipl.-Ing. Karl-Heinz Lambertz, Duisburg (since 2002)
Prof. Dr.-Ing. habil. Dr. h. c. mult. Boleslaw Mazurkiewicz, Gdańsk
Dr.-Ing. Christoph Miller, Hamburg (since 2002)
Dr.-Ing. Karl Morgen, Hamburg
Dr.-Ing. Friedrich W. Oeser, Hamburg
Dr.-Ing. Heiner Otten, Dortmund (until 2002)
Dipl.-Ing. Martin Rahtge, Bremen (since 2004)
Dipl.-Ing. Emile Reuter, Luxembourg (since 2002)
Dipl.-Ing. Ulrich Reinke, Bremen (until 2002)
Prof. Dr.-Ing. Werner Richwien, Essen (Deputy Chairman)
Dr.-Ing. Peter Ruland, Hamburg (since 2002)
Dr.-Ing. Helmut Salzmann, Hamburg
Dr.-Ing. Roger Schlim, Luxembourg (until 2002)
Prof. Dr.-Ing. Hartmut Schulz, Munich
Dr.-Ing. Manfred Stocker, Schrobenhausen
Dipl.-Ing. Hans-Peter Tzschucke, Bonn (until 2002)
Ir. Aad van der Horst, Gouda
Dr.-Ing. Hans-Werner Vollstedt, Bremerhaven

The fundamental revisions contained in EAU 2004 also made detailed discussions with colleagues and specialists outside the committee necessary, even to the extent of setting up temporary study groups for specific topics. The committee thanks all those colleagues who in this way made significant contributions to EAU 2004. In addition, numerous contributions presented by the professional world and recommendations from other committees and international technical–scientific associations have been incorporated in these recommendations.

These contributions and the results of the revision work mean that EAU 2004 now conforms with the current international standard. It provides the construction industry with an adapted, updated set of recommendations brought into line with European standards that will continue to act as a valuable aid for design, tendering, placing orders, technical processing, economic and ecological construction, quality control and settlement of contracts, and will thus enable harbour and waterway
construction projects to be carried out according to the state of the art and according to uniform conditions.
The committee thanks all those whose contributions and suggestions have helped to bring the recommendations up to their present state, and wishes the EAU 2004 the same success as its earlier editions.
Vote of thanks goes to Prof. Dr.-Ing. Dr.-Ing. E. h. Victor Rizkallah, who was chairman of the committee until the end of 2004 and thus the 10th German edition of the recommendations have been prepared and published under his responsibility.
In the translation works very valuable advices and help came from Prof. Dr.-Ing. Martin Hager, who was chairman of the committee up to the end of 1996. Finally a very special vote of thanks goes to my co-worker, Dipl.-Ing. Carsten Pohl, who assisted me in the extensive preparation of this edition and in the review of the text with great dedication and diligence.
Further special thanks are owed to the publisher Ernst & Sohn for the good cooperation and the meticulous care with which all drawings, tables and equations were prepared, providing once again an excellent printing quality and layout of the 8th revised English edition of EAU 2004.

Hannover, November 2005

Prof. Dr.-Ing. Werner Richwien
Contents

Members of the Committee for Waterfront Structures V
Preface to the 8th Revised Edition .. VII
List of Recommendations in the 8th Edition ... XIX

Recommendations .. 1

<table>
<thead>
<tr>
<th>0</th>
<th>Structural calculations ... 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>General ... 1</td>
</tr>
<tr>
<td>0.2</td>
<td>Safety concept .. 3</td>
</tr>
<tr>
<td>0.3</td>
<td>Calculations for waterfront structures 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Subsoil ... 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mean characteristic soil properties (R 9) 11</td>
</tr>
<tr>
<td>1.2</td>
<td>Layout and depth of boreholes and penetrometer tests (R 1) 11</td>
</tr>
<tr>
<td>1.3</td>
<td>Preparation of subsoil investigation reports, expert opinions and foundation recommendations for waterfront structures (R 150) 17</td>
</tr>
<tr>
<td>1.4</td>
<td>Determination of undrained shear strength c_u in field tests (R 88) 20</td>
</tr>
<tr>
<td>1.5</td>
<td>Investigation of the degree of density of non-cohesive backfill for waterfront structures (R 71) ... 21</td>
</tr>
<tr>
<td>1.6</td>
<td>Degree of density of hydraulically filled, non-cohesive soils (R 175) 23</td>
</tr>
<tr>
<td>1.7</td>
<td>Degree of density of dumped, non-cohesive soils (R 178) 26</td>
</tr>
<tr>
<td>1.8</td>
<td>Assessment of the subsoil for the installation of sheet piles and piles and methods of installation (R 154) ... 27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Active and passive earth pressures ... 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>General ... 31</td>
</tr>
<tr>
<td>2.1</td>
<td>Assumed apparent cohesion (capillary cohesion) in sand (R 2) 31</td>
</tr>
<tr>
<td>2.2</td>
<td>Assumed apparent cohesion (capillary cohesion) in sand (R 3) 31</td>
</tr>
<tr>
<td>2.3</td>
<td>Assumed angle of earth pressure and adhesion (R 4) 32</td>
</tr>
<tr>
<td>2.4</td>
<td>Determination of the active earth pressure using the CULMANN method (R 171) 32</td>
</tr>
<tr>
<td>2.5</td>
<td>Determination of active earth pressure in a steep, paved embankment of a partially sloping bank construction (R 198) ... 36</td>
</tr>
<tr>
<td>2.6</td>
<td>Determination of active earth pressure in saturated, non- or partially consolidated, soft cohesive soils (R 130) 39</td>
</tr>
<tr>
<td>2.7</td>
<td>Effect of artesian water pressure under harbour bottom or river bed on active and passive earth pressure (R 52) ... 42</td>
</tr>
</tbody>
</table>
2.8 Use of active earth pressure and water pressure difference, and construction advice for waterfront structures with soil replacement and fouled or disturbed dredge pit bottom (R 110) .. 44
2.9 Effect of percolating groundwater on water pressure difference, active and passive earth pressures (R 114) ... 48
2.10 Determining the amount of displacement required for the mobilisation of passive earth pressure in non-cohesive soils (R 174) .. 54
2.11 Measures for increasing the passive earth pressure in front of waterfront structures (R 164) ... 56
2.12 Passive earth pressure in front of sheet piles in soft cohesive soils, with rapid loading on the land side (R 190) ... 58
2.13 Effects of earthquakes on the design and dimensioning of waterfront structures (R 124) ... 61

3 Overall stability, foundation failure and sliding .. 67
3.1 Relevant standards ... 67
3.2 Safety against failure by hydraulic heave (R 115) .. 67
3.3 Piping (foundation failure due to erosion) (R 116) .. 73
3.4 Verification of overall stability of structures on elevated piled structures (R 170) ... 75

4 Water levels, water pressure, drainage .. 78
4.1 Mean groundwater level (R 58) ... 78
4.2 Water pressure difference in the water-side direction (R 19) .. 78
4.3 Water pressure difference on sheet piling in front of embankments below elevated decks in tidal areas (R 65) ... 81
4.4 Design of filter weepholes for sheet piling structures (R 51) .. 82
4.5 Design of drainage systems with flap valves for waterfront structures in tidal areas (R 32) ... 83
4.6 Relieving artesian pressure under harbour bottoms (R 53) .. 86
4.7 Assessment of groundwater flow (R 113) ... 88
4.8 Temporary stabilisation of waterfront structures by groundwater lowering (R 166) ... 96
4.9 Flood protection walls in seaports (R 165) ... 98

5 Ship dimensions and loads on waterfront structures .. 106
5.1 Ship dimensions (R 39) ... 106
5.2 Assumed berthing pressure of vessels at quays (R 38) .. 115
5.3 Berthing velocities of vessels transverse to berth (R 40) .. 115
5.4 Load cases (R 18) ... 116
5.5 Vertical live loads (R 5) ... 118
5.6 Determining the “design wave” for maritime and port structures (R 136) .. 121
5.7 Wave pressure on vertical waterfront structures in coastal areas (R 135) .. 131

XII
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Loads arising from surging and receding waves due to inflow or outflow of water (R 185)</td>
<td>136</td>
</tr>
<tr>
<td>5.9</td>
<td>Effects of waves from ship movements (R 186)</td>
<td>137</td>
</tr>
<tr>
<td>5.10</td>
<td>Wave pressure on pile structures (R 159)</td>
<td>142</td>
</tr>
<tr>
<td>5.11</td>
<td>Wind loads on moored ships and their influence on the design of mooring and fendering facilities (R 153)</td>
<td>150</td>
</tr>
<tr>
<td>5.12</td>
<td>Layout and loading of bollards for seagoing vessels (R 12)</td>
<td>153</td>
</tr>
<tr>
<td>5.13</td>
<td>Layout, design and loading of bollards in inland harbours (R 102)</td>
<td>154</td>
</tr>
<tr>
<td>5.14</td>
<td>Quay loads from cranes and other transhipment equipment (R 84)</td>
<td>157</td>
</tr>
<tr>
<td>5.15</td>
<td>Impact and pressure of ice on waterfront structures, fenders and dolphins in coastal areas (R 177)</td>
<td>161</td>
</tr>
<tr>
<td>5.16</td>
<td>Impact and pressure of ice on waterfront structures, piers and dolphins in inland areas (R 205)</td>
<td>166</td>
</tr>
<tr>
<td>5.17</td>
<td>Loads on waterfront structures and dolphins from the reaction forces of fenders (R 213)</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td>Configuration of cross-section and equipment for waterfront structures</td>
<td>170</td>
</tr>
<tr>
<td>6.1</td>
<td>Standard dimensions of cross-section of waterfront structures in seaports (R 6)</td>
<td>170</td>
</tr>
<tr>
<td>6.2</td>
<td>Top edge of waterfront structures in seaports (R 122)</td>
<td>172</td>
</tr>
<tr>
<td>6.3</td>
<td>Standard cross-sections of waterfront structures in inland harbours (R 74)</td>
<td>174</td>
</tr>
<tr>
<td>6.4</td>
<td>Sheet piling waterfront on canals for inland vessels (R 106)</td>
<td>178</td>
</tr>
<tr>
<td>6.5</td>
<td>Partially sloped waterfront construction in inland harbours with extreme water level fluctuations (R 119)</td>
<td>180</td>
</tr>
<tr>
<td>6.6</td>
<td>Design of waterfront areas in inland ports according to operational aspects (R 158)</td>
<td>182</td>
</tr>
<tr>
<td>6.7</td>
<td>Nominal depth and design depth of harbour bottom (R 36)</td>
<td>184</td>
</tr>
<tr>
<td>6.8</td>
<td>Strengthening of waterfront structures to deepen harbour bottoms in seaports (R 200)</td>
<td>186</td>
</tr>
<tr>
<td>6.9</td>
<td>Redesign of waterfront structures in inland harbours (R 201)</td>
<td>191</td>
</tr>
<tr>
<td>6.10</td>
<td>Provision of quick-release hooks at berths for large vessels (R 70)</td>
<td>194</td>
</tr>
<tr>
<td>6.11</td>
<td>Layout, design and loading of access ladders (R 14)</td>
<td>195</td>
</tr>
<tr>
<td>6.12</td>
<td>Layout and design of stairs in seaports (R 24)</td>
<td>197</td>
</tr>
<tr>
<td>6.13</td>
<td>Equipment for waterfront structures in seaports with supply and disposal facilities (R 173)</td>
<td>198</td>
</tr>
<tr>
<td>6.14</td>
<td>Fenders at berths for large vessels (R 60)</td>
<td>202</td>
</tr>
<tr>
<td>6.15</td>
<td>Fenders in inland harbours (R 47)</td>
<td>217</td>
</tr>
<tr>
<td>6.16</td>
<td>Foundations to craneways on waterfront structures (R 120)</td>
<td>217</td>
</tr>
<tr>
<td>6.17</td>
<td>Fixing crane rails to concrete (R 85)</td>
<td>220</td>
</tr>
<tr>
<td>6.18</td>
<td>Connection of expansion joint seal in a reinforced concrete bottom to loadbearing external steel sheet piling (R 191)</td>
<td>228</td>
</tr>
<tr>
<td>6.19</td>
<td>Connecting steel sheet piling to a concrete structure (R 196)</td>
<td>229</td>
</tr>
<tr>
<td>6.20</td>
<td>Floating wharves in seaports (R 206)</td>
<td>232</td>
</tr>
</tbody>
</table>
7 Earthworks and dredging ... 234
 7.1 Dredging in front of quay walls in seaports (R 80) 234
 7.2 Dredging and hydraulic fill tolerances (R 139) 236
 7.3 Hydraulic filling of port areas for planned waterfront structures (R 81) 240
 7.4 Backfilling of waterfront structures (R 73) 244
 7.5 Dredging of underwater slopes (R 138) 246
 7.6 Scour and scour protection at waterfront structures (R 83) 250
 7.7 Vertical drains to accelerate the consolidation of soft cohesive soils (R 93) . 260
 7.8 Subsidence of non-cohesive soils (R 168) 264
 7.9 Soil replacement procedure for waterfront structures (R 109) 265
 7.10 Calculation and design of rubble mound moles and breakwaters (R 137) ... 271
 7.11 Lightweight backfilling to sheet piling structures (R 187) . . . 282
 7.12 Soil compaction using heavy drop weights (R 188) 282
 7.13 Consolidation of soft cohesive soils by preloading (R 179) ... 283
 7.14 Improving the bearing capacity of soft cohesive soils by using vertical elements (R 210) 290
 7.15 Installation of mineral bottom seals under water and their connection to waterfront structures (R 204) 295

8 Sheet piling structures ... 298
 8.1 Material and construction 298
 8.1.1 Design and driving of timber sheeting (R 22) 298
 8.1.2 Design and driving of reinforced concrete sheet piling (R 21) 301
 8.1.3 Steel sheet piling (R 34) 304
 8.1.4 Combined steel sheet piling (R 7) 304
 8.1.5 Shear-resistant interlock connections for steel sheet piling (Jagged Walls) (R 103) 307
 8.1.6 Quality requirements for steels and interlock dimension tolerances for steel sheet piles (R 67) 311
 8.1.7 Acceptance conditions for steel sheet piles and steel piles on site (R 98) ... 315
 8.1.8 Corrosion of steel sheet piling, and countermeasures (R 35) 316
 8.1.9 Danger of sand abrasion on sheet piling (R 23) 322
 8.1.10 Driving assistance for steel sheet piling by means of shock blasting (R 183) 322
 8.1.11 Driving corrugated steel sheet piles (R 118) 326
 8.1.12 Driving of combined steel sheet piling (R 104) 330
 8.1.13 Observations during the installation of steel sheet piles, tolerances (R 105) . 334
 8.1.14 Noise protection, low-noise driving (R 149) 336
 8.1.15 Driving of steel sheet piles and steel piles at low temperatures (R 90) 341
 8.1.16 Repairing interlock damage on driven steel sheet piling (R 167) 342
 8.1.17 Design of pile driving templates (R 140) 345
 8.1.18 Design of welded joints in steel sheet piles and driven steel piles (R 99) ... 348

XIV
8.1.19 Burning off the tops of driven steel sections for loadbearing welded connections (R 91) .. 351
8.1.20 Watertightness of steel sheet piling (R 117) .. 351
8.1.21 Waterfront structures in regions subject to mining subsidence (R 121) 354
8.1.22 Vibration of U- and Z-section steel sheet piles (R 202) .. 358
8.1.23 Jetting when installing steel sheet piles (R 203) .. 362
8.1.24 Pressing of U- and Z-section steel sheet piles (R 212) .. 364
8.2 Calculation and design of sheet piling .. 365
8.2.0 General .. 365
8.2.1 Sheet piling structures without anchors (R 161) .. 369
8.2.2 Calculations for sheet piling structures with fixity in the ground and a single anchor (R 77) .. 370
8.2.3 Calculation of sheet pile walls with double anchors (R 134) .. 375
8.2.4 Applying the angle of earth pressure and the sheet pile wall analysis in the vertical direction (R 4) .. 376
8.2.5 Taking account of inclined embankments in front of sheet piling and unfavourable groundwater flows in the passive earth pressure area of non-cohesive soil (R 199) .. 382
8.2.6 Bearing stability verification for the elements of sheet piling structures (R 20) .. 382
8.2.7 Consideration of axial loads in sheet piling (R 44) .. 386
8.2.8 Selection of embedment depth for sheet piling (R 55) .. 386
8.2.9 Determining the embedment depth for sheet pile walls with full or partial fixity in the soil (R 56) .. 387
8.2.10 Staggered embedment depth for sheet steel piling (R 41) .. 390
8.2.11 Vertical loads on sheet piling (R 33) .. 392
8.2.12 Horizontal actions parallel to the quay in steel sheet pile walls (R 132) 394
8.2.13 Calculation of anchor walls fixed in the ground (R 152) .. 397
8.2.14 Staggered arrangement of anchor walls (R 42) .. 398
8.2.15 Steel sheet piling driven into bedrock or rock-like soils (R 57) .. 399
8.2.16 Waterproof sheet piling in unconsolidated, soft cohesive soils, especially in connection with undisplaceable structures (R 43) .. 399
8.2.17 Effects of earthquakes on the design and dimensioning of waterfront structures (R 124) .. 401
8.2.18 Design and dimensioning of single-anchor sheet piling structures in earthquake zones (R 125) .. 401
8.3 Calculation and design of cofferdams .. 402
8.3.1 Cellular cofferdams as excavation enclosures and waterfront structures (R 100) .. 402
8.3.2 Double-wall cofferdams as excavation enclosures and waterfront structures (R 101) .. 413
8.3.3 Narrow partition moles in sheet piling (R 162) .. 419
8.4 Anchors, stiffeners .. 421
8.4.1 Design of steel walings for sheet piling (R 29) .. 421

XV
8.4.2 Verification of bearing capacity of steel walings (R 30) 422
8.4.3 Walings of reinforced concrete for sheet piling with driven steel anchor piles (R 59) ... 424
8.4.4 Steel capping beams for waterfront structures (R 95) 429
8.4.5 Reinforced concrete capping beams for waterfront structures with steel sheet piling (R 129) ... 432
8.4.6 Top steel nosing for reinforced concrete walls and capping beams at waterfront structures (R 94) .. 438
8.4.7 Auxiliary anchoring at the top of steel sheet piling structures (R 133) 440
8.4.8 Threads for sheet piling anchors (R 184) ... 442
8.4.9 Verification of stability for anchoring at lower failure plane (R 10) 444
8.4.10 Sheet piling anchors in unconsolidated, soft cohesive soils (R 50) 452
8.4.11 Design and calculation of protruding corner structures with tie rod (R 31) ... 455
8.4.12 Design and calculation of protruding quay wall corners with batter pile anchoring (R 146) .. 457
8.4.13 High prestressing of anchors of high-strength steels for waterfront structures (R 151) ... 460
8.4.14 Hinged connection of driven steel anchor piles to steel sheet piling structures (R 145) ... 462
8.4.15 Armoured steel sheet piling (R 176) ... 471

9 Anchor piles and anchors ... 478
9.1 General ... 478
9.2 Anchoring elements ... 478
9.3 Safety factors for anchors (R 26) ... 482
9.4 Pull-out resistance of piles (R 27) ... 482
9.5 Design and installation of driven steel piles (R 16) 483
9.6 Design and loading of driven piles with grouted skin (R 66) 484
9.7 Construction and testing (R 207) ... 487
9.8 Anchoring with piles of small diameter (R 208) 487
9.9 Connecting anchor piles to reinforced concrete and steel structures 487
9.10 Transmission of horizontal loads via pile bents, diaphragm walls, frames and large bored piles (R 209) .. 487

10 Waterfront structures, quays and superstructures of concrete 490
10.1 Design principles for waterfront structures, quays and superstructures (R 17) ... 490
10.2 Design and construction of reinforced concrete waterfront structures (R 72) . 491
10.3 Formwork in marine environments (R 169) ... 494
10.4 Design of reinforced concrete roadway slabs on piers (R 76) 495
10.5 Box caissons as waterfront structures in seaports (R 79) 496
10.6 Pneumatic caissons as waterfront structures in seaports (R 87) 499

XVI
10.7 Design and dimensioning of quay walls in block construction (R 123) 502
10.8 Construction and design of quay walls using the open caisson method (R 147) ... 507
10.9 Design and dimensioning of large, solid waterfront structures (e.g. block construction, box or pneumatic caissons) in earthquake areas (R 126) 510
10.10 Application and design of bored pile walls (R 86) 511
10.11 Application and design of diaphragm walls (R 144) 514
10.12 Application and construction of impermeable diaphragm walls and impermeable thin walls (R 156) .. 519
10.13 Inventory before repairing concrete components in hydraulic engineering (R 194) .. 522
10.14 Repair of concrete components in hydraulic engineering (R 195) 530

11 Piled structures ... 540
11.1 General ... 540
11.2 Determining the active earth pressure shielding on a wall below a relieving platform under average ground surcharges (R 172) .. 540
11.3 Active earth pressure on sheet piling in front of piled structures (R 45) 542
11.4 Calculation of planar piled structures (R 78) 549
11.5 Design and calculation of general piled structures (R 157) 553
11.6 Wave pressure on piled structures (R 159) .. 557
11.7 Verification of overall stability of structures on elevated piled structures (R 170) .. 557
11.8 Design and dimensioning of piled structures in earthquake zones (R 127) . 557
11.9 Stiffening the tops of steel pipe driven piles (R 192) 558

12 Embankments .. 560
12.1 Slope protection (R 211) .. 560
12.2 Embankments in seaports and tidal inland harbours (R 107) 564
12.3 Embankments below quay superstructures behind closed sheet piling (R 68) .. 569
12.4 Partially sloped embankment in inland harbours with large water level fluctuations (R 119) .. 569
12.5 Use of geotextile filters in slope and bottom protection (R 189) 569

13 Dolphins .. 573
13.1 Design of resilient multi-pile and single-pile dolphins (R 69) 573
13.2 Spring constant for the calculation and dimensioning of heavy-duty fenders and berthing dolphins (R 111) .. 577
13.3 Impact forces and required energy absorption capacity of fenders and dolphins in seaports (R 128) .. 581
13.4 Use of weldable fine-grained structural steels for resilient berthing and mooring dolphins in marine construction (R 112) 584