Biology of the Prokaryotes
Preface

Microbiology is More Than the Biochemistry or Molecular Biology of Microorganisms

Bacteria were detected in the 17th century as minute unicellular organisms that lacked any detectable structure and occurred almost everywhere. Late in the 19th century, they were identified as a large group of organisms with distinct and specific physiological properties, such as the ability to ferment carbohydrates, to grow photoautotrophically, and to act as pathogens. The microbes were grouped systematically together with other small and allegedly primitive organisms, in particular unicellular algae, fungi, and protozoa. Today we distinguish between prokaryotic and eukaryotic microorganisms. In contrast to eukaryotic cells, prokaryotes lack a nuclear membrane (i.e., a nucleus), mitochondria and plastids, and mitosis and meiosis, but they contain particular cell wall and membrane components not found in eukaryotes. Prokaryotes are small, but neither simple nor primitive. At the morphological level, they are not “bags full of enzymes,” but highly structured cells, able to grow and multiply at an astonishing speed, with cell divisions as accurate as in the eukaryotes, and with compartments that separate various metabolic activities. At the physiological level, however, the immense diversity of the prokaryotes has always been considered as their hallmark, together with their surprising adaptability to environmental changes.

Biology has been subdivided traditionally, according to the main types of organisms, into botany, zoology, and microbiology. The latter dealt with bacteria (prokaryotes), with eukaryotes of lower complexity, and with viruses. Modern biology, however, is subdivided into sections more defined by structures and organisms of increasing complexity, in particular from macromolecules and genes to the living cells, organisms, and populations. This classification facilitates the recognition of universal principles common to all living systems. In unicellular organisms, the cell is by definition also the organism. Their biology thus includes everything from the molecular structures of the cell and from cellular physiology to differentiation processes and their behavior as members of complex ecosystems.

Why a new Textbook on the Biology of the Prokaryotes?

Although many cellular components and universal biochemical mechanisms are present in all living organisms, the tremendous physiological diversity and adaptability of the prokaryotes, together with their fundamental role in environmental, biotechnological, and medical research and application, justify their separate treatment. Hence, this book is restricted to prokaryotic organisms, i.e., the true bacteria (eubacteria) and the archaea (archaebacteria), and their viruses (bacteriophages), which at the DNA- or RNA-level correspond to plasmids and not to true organisms.

Molecular biology has developed largely through studies with bacteria. This includes the rise of recombinant DNA or gene technology. It is safe to conclude that despite a shift of interest in recent times to eukaryotic organisms, the prokaryotes will continue to retain a central place both in fundamental and in applied biological research. This will, however, require new textbooks, such as this one, which presents an integrated view of the prokaryotic cell as an organism and of all prokaryotes as a large population in which all organisms communicate among themselves and with the rest of the environment.

Bacteria, although autonomous cells and complete organisms, cannot be fully understood if viewed as single cells, much as a sequenced gene cannot be understood unless its role in the biology of its organism is also considered. In this context, one of the most outstanding capacities of the prokaryotes is their extended horizontal gene transfer under natural conditions. A bacterium has access to any useful gene of any other strain and the sum of all the genes of all organisms of a community constitutes a large collective genome. Gene transfer, however, is optional and involves only a small percentage of the genes in a single transfer event. Of these, only the species-specific genes will recombine into the cellular chromosome of a cell. All others will be lost by curing unless under counter-selection. Life in temporary ecosystems of mixed populations with complementary metabolic and mor-
phological capacities is the prokaryotic equivalent of multicellular life. Any bacterium with its cellular chromosome and variable autonomous genetic elements which is a member of an ecosystem thus resembles a differentiated cell in an eukaryotic multicellular organism. Furthermore, because no strict genetic isolation exists, speciation is not as pronounced in the prokaryotic world as in the eukaryotic world. This requires a new type of systematics. Viewed in this way, the lifestyle of the archaea (archaebacteria) resembles, despite important biochemical differences, the lifestyle of the bacteria (eubacteria) more than it resembles that of the eukaryotes.

How Is the Book Organized?

This book is based on a physiological and functional approach in which the diversity of the prokaryotic world is made visible by characteristic examples and in which up-and-coming developments are indicated. The book is divided into nine sections; the beginning sections provide the basic facts needed to understand the later sections. In this way, the book proceeds from the description of cellular structures through metabolic pathways and metabolic reactions to the genes and regulatory mechanisms. At a higher level of complexity, cell differentiation processes will be followed by a description of the diversity of prokaryotes and of their role in the biosphere. The book will end with a section on man and microbes, i.e., applied microbiology.

What Are the Aims and Scope of the Book?

The book is written for upper-level undergraduates, graduate and postgraduate students and for researchers working in fundamental research or using bacteria only as a tool, for example, in recombinant DNA technology, in biotechnology, and in medicine. Rather than presenting all the details known in biochemistry and in genetics and that can be found in such corresponding textbooks, this book concentrates on central concepts of the bacterial lifestyle and on the physiological significance that the various cellular structures, metabolic pathways, and regulatory networks have. Parts of the book, especially those dealing with the genetics of the prokaryotes and gene control, may appear "colicentric." This is because much more is understood at all levels about *Escherichia coli* than about any other bacterium, even after the complete sequencing of several other bacterial chromosomes. Wherever similar phenomena are suspected to exist or have been analyzed in molecular detail and wherever new phenomena have been reported in other bacteria, e.g., sporulation and antibiotic biosynthesis, these have been used as examples. Moreover, it has been forgotten all too often that basic research in microbiology is the foundation on which applied microbiology rests. Most techniques dealing with or using prokaryotes in modern medicine, agriculture, industrial production, and environmental processes profited vastly from progress in basic research. Wherever new developments and promising areas in applied microbiology can be anticipated, they have been pointed out.

Pedagogical Aids

Each section is preceded by a general introduction in which the subjects treated and the connections which link them are briefly described. Where possible, links to other sections are also indicated. This is especially conspicuous for Table 20.1, in which major global regulatory networks of prokaryotes are listed. These networks can best be used, as has been attempted in this book, to define the inherent logic of bacterial metabolism and to bring together seemingly unrelated phenomena that are parts of the same global network, e.g., bacterial taxes and carbon catabolite control, both involved in the quest for food; sporulation and antibiotic biosynthesis, both part of the same differentiation process; cell surface and chromosomal rearrangements, both part of pathogen strategies in host infection. In all chapters, essential definitions are given and essential conclusions are highlighted in shaded areas. The corresponding pages are listed in the Index, and the sum constitutes a glossary. Historical and outstanding experiments, basic and new methods, or information for the "specialist" appear in boxes. All of the chapters offer Further Reading in which mostly recent papers and reviews are listed that can be used for further studies and research. Writing, editing, and coordination of the work was done by a team of individuals, each with expertise in the area that they covered. A list of their names and their contribution is given below. We hope that the general concept of the book and its content will increase the fascination of a broad readership for the world of the prokaryotes.

Acknowledgements

We would like to express our gratitude to all those who made this book possible. Mrs M. Hauff-Tischendorf from
Georg Thieme Verlag deserves the credit for having persuaded us to undertake the writing of a new type of textbook, the type of which she left open to us. We are indebted to the professionals who by some magic transformed our manuscripts and hand-drawn figures into a printed book. This is especially true for our copy editors Karen A. Brune and Lynn Rogers-Blaut.

The Editors
Addresses

Sankar Adhya
Laboratory of Molecular Biology
National Cancer Institute
Bethesda, Maryland 20892
USA

Carl-Alfred Alpert
INRA Institut National de la Recherche Agronomique
Laboratoire Vivande
78352 Jouy-en-Josas Cedex
France

Ian R. Booth
University of Aberdeen
Dept. of Molecular + Cell Biology
Marshall College
Aberdeen AB9 1AS
Great Britain

Wolfgang Buckel
Fachbereich Biologie
Universität Marburg
Karl-von-Frisch-Straße
35043 Marburg
Germany

Arnold L. Demain
Department of Biology
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, Mass. 02139
USA

D. N. Dowling
Dept. of Food Microbiology
University College Cork
Cork
Ireland

Gerhart Drews
Albert-Ludwigs Universität
Institut für Biologie II
Mikrobiologie
Schänzlestraße 1
79104 Freiburg/Br
Germany

Bärbel Friedrich
Humboldt-Universität
Mathemat.-Naturwissenschaft. Fakultät
Institut für Biologie/Mikrobiologie
Chausseestraße 117
10115 Berlin
Germany

Georg Fuchs
Albert-Ludwigs-Universität
Inst. für Biologie II – Mikrobiologie
Schänzlestr. 1
79104 Freiburg
Germany

Fergal O’Gara
Dept. of Food Microbiology
University College Cork
Cork
Ireland

Mike Goodfellow
Department of Microbiology
The Medical School
Framlington Place
Newcastle upon Tyne NE2 4HH,
Great Britain

Jörg Hacker
Institut für Molekulare Infektionsbiologie
Röntgenring 11
97070 Würzburg
Germany

Wolfgang Hillen
Institut für Mikrobiologie und Biochemie der Universität
Staudtstraße 5
91058 Erlangen
Germany

Gary R. Jacobson
Boston University
Department of Biology
2, Cummington Street
Boston, Mass. 02215
USA

Klaus Jann
Barbara Jann
Max-Planck-Institut für Immunobiologie
Stibeweg 51
79108 Freiburg
Germany

Börries Kemper
Institut für Genetik der Universität zu Köln
Zülpicher Str. 47
50674 Köln
Germany

Rolf Knippers
Fakultät für Biologie
Universität Konstanz
Universitätsstraße 10
78464 Konstanz
Germany

Werner Köhler
Adolf Reichwein Str. 26
07745 Jena
Germany

Reinhard Krämer
Institut für Biochemie der Universität Köln
Zülpicher Str. 47
50674 Köln
Germany

Achim Kröger
Institut für Mikrobiologie
Biozentrum Niederrursel
Marie-Curie-Str. 9
60439 Frankfurt a.M.
Germany

J. Gijs Kuenen
Laboratory of Microbiology
Delft University of Technology
Julianalaan 67A
2628 BC Delft
The Netherlands
Addresses

Giancarlo Lancini
Lepetit Research Center
Via R. Lepetit 34
21040 Gerenzano (Varese)
Italy

Erich Lanka
MPI für Molekulare Genetik
Ihnesstraße 73
14195 Berlin
Germany

Joseph W. Lengeler
FB Biologie/Chemie
Universität Osnabrück
Postfach 4469
49076 Osnabrück
Germany

Edmond C.C. Lin
Harvard Medical School
Dept. of Microbiology and Molecular Genetics
Longwood Avenue
Boston, Mass. 02115
USA

Wolfgang Ludwig
Lehrstuhl für Mikrobiologie
Technische Universität München
Arcisstraße 21
802890 München
Germany

Mohamed A. Marahiel
Universität Marburg
Fachbereich Chemie
Hans-Meerwein-Straße
35043 Marburg/Lahn
Germany

Frank Mayer
Institut für Mikrobiologie
Georg-August-Universität
Grisebachstraße 8
37077 Göttingen
Germany

Walter Messer
MPI für Molekulare Genetik
Abteilung Trautner
Ihnesstraße 73
14195 Berlin
Germany

Kurt Nordström
Department of Microbiology
Uppsala University
Biomedical Center
Box 581
75123 Uppsala
Sweden

M.P. Nuti
Dip. di Biotechnologie Agrarie
Università di Padova
Via Gradenzigo 6
Padova
Italy

Werner Pansegrau
Institute for Molecular Plant Sciences
Clusius Laboratory
Leiden University
2333 AL Leiden
The Netherlands

Pieter W. Postma
Universiteit van Amsterdam
E.C. Slater Institute for Biochemical Research
Plantage Muidergracht 12
1018 TV Amsterdam
The Netherlands

Ursula B. Priéfer
Institut für Botanik
Rheinisch-Westfälische Technische Hochschule
Worringer Weg
52056 Aachen
Germany

Alfred Pühler
Fakultät für Biologie VI (Genetik)
Universität Bielefeld
Postfach 10 01 31
33615 Bielefeld
Germany

Hermann Sahm
Institut für Biotechnologie I
Forschungszentrum Jülich GmbH
Postfach 1913
52428 Jülich
Germany

Bernhard Schink
Fakultät für Biologie
Universität Konstanz
Universitätsstraße 10
78464 Konstanz
Germany

Hans-Günter Schlegel
Institut für Mikrobiologie
Universität Göttingen
Grisebachstraße 8
37077 Göttingen
Germany

Eriko Stakebrandt
DSM – Deutsche Sammlung von Mikroorganismen u. Zellkulturen
Mascheroder Weg 1b
38124 Braunschweig
Germany

Brian Tindall
DSM – Deutsche Sammlung von Mikroorganismen u. Zellkulturen
Mascheroder Weg 1b
38124 Braunschweig
Germany

Gottfried Unden
Institut für Mikrobiologie u. Wein-
Forsschung
FB 21/Biologie
Joh. Gutenberg-Univ. Mainz
Becherweg 15
55099 Mainz
Germany

Peter Zuber
Department of Biochemistry and Molecular Biology
Louisiana State University
Shreveport, Louisiana
USA
Contents

1 Bacteriology Paved the Way to Cell Biology: a Historical Account

H.G. Schlegel, W. Köhler

1.1 New Concepts and Experimental Approaches Paved the Way for Progress 1
1.2 Observations and Speculation Lead to the First Concept of the Existence of Living Infectious Agents 2
1.3 Bacteria are Members of a New, Large Group of Independent Organisms 3
1.4 The Introduction of Solid, Defined Media and Pure-Culture Methods Marks a True Revolution 4
1.5 The New Bacteriological Methods Proved that the Causative Agents of Infectious Diseases are Bacteria 5
1.6 Studies on Fermentation Founded Bacterial Physiology and Biochemistry 6
1.7 Lithoautotrophy Is the Ability of Bacteria to Obtain Energy from the Oxidation of Inorganic Compounds and Carbon from Carbon Dioxide 6
1.8 Light-Dependent Processes such as Phototaxis, Light-Induced Energy Transduction, and the Photoassimilation of Carbon Dioxide Took a Long Time to be Understood 7
1.9 Dinitrogen Fixation Is Unique to the Prokaryotes 8
1.10 The Analysis of Anabolic and Catabolic Metabolism Lead to the Discovery of Substrates, Products, Apoenzymes, and Coenzymes, and, in the end, of Metabolic Pathways 9
1.11 Studies on Inclusion Bodies and the Structures and Functions of Cell Envelopes Revealed the Organization of the Bacterial Cell 10
1.12 Bacterial Adaptation was Well Recognized Before the Genetic Approach Revealed the Basis of Molecular Mechanisms of Regulation 11
1.13 Studies on the Metabolic Types of Bacteria Revealed Their Functions in the Biosphere 12
1.14 The Goals and Methods of the Classification of Bacteria Have Changed 13
1.15 Bacterial Viruses (Bacteriophages) Were Detected as Lytic Principles 13
1.16 Studies on Heredity in Bacteria Provides the Decisive Principles and Concepts for the Promotion of Modern Biology Including Gene Technology 14
1.17 Epilogue 15

Section I The Prokaryotic Cell

F. Mayer

2 Cellular and Subcellular Organization of Prokaryotes 20

F. Mayer

2.1 Prokaryotes, Though Small, Contain all Structural Elements Necessary for Survival and Multiplication 20
2.2 Cellular Structures Can Be Made Visible or Identified by Numerous Methods 22
2.3 Prokaryotes May Occur as Single Cells or as Cell Associations 25
2.4 The Structural Components of Prokaryotic Cell Envelopes Are Organized as Barriers and Interfaces 27
Section II Basic Prerequisites for Cellular Life

A. Kröger, G. Fuchs

3 Substrate-Level Phosphorylation

A. Kröger

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 ATP Synthesis Is Coupled to Exergonic Reactions</td>
<td>48</td>
</tr>
<tr>
<td>3.2 The ATP Yield Is a Function of the Free Energy of the Driving Reaction</td>
<td>49</td>
</tr>
<tr>
<td>3.3 Coupling of ATP Synthesis to Glucose Degradation Requires C-C Cleavage and Subsequent Oxidation</td>
<td>51</td>
</tr>
<tr>
<td>3.4 A “High-Energy” Compound Is Formed in SLP</td>
<td>52</td>
</tr>
<tr>
<td>3.5 Pyruvate Oxidation Is Coupled to Energy Conservation</td>
<td>55</td>
</tr>
<tr>
<td>3.6 The Catabolic Function of the Citrate Cycle Is to Provide Reducing Equivalents for Oxidative Phosphorylation</td>
<td>55</td>
</tr>
</tbody>
</table>

4 Electron-Transport-Coupled Phosphorylation

A. Kröger

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 In ETP, the Amount of ATP Formed Corresponds With the Free Energy of the Driving Redox Reaction</td>
<td>59</td>
</tr>
<tr>
<td>4.2 All ATP Synthases Operate According to the Same Mechanism</td>
<td>62</td>
</tr>
<tr>
<td>4.3 There Are Many Different Respiratory Chains</td>
<td>63</td>
</tr>
<tr>
<td>4.4 There Are Many Different Mechanisms of Coupling Electron Transport to Proton Transport</td>
<td>65</td>
</tr>
<tr>
<td>4.5 In Photophosphorylation, Electron Transport and Proton Translocation Are Driven by Light</td>
<td>67</td>
</tr>
</tbody>
</table>

5 Multiple Roles of Prokaryotic Cell Membranes

R. Krämer

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Bacterial Membranes Function as Permeability Barriers</td>
<td>68</td>
</tr>
<tr>
<td>5.2 The Structure and Function of Transport Is Dictated by the Membrane</td>
<td>69</td>
</tr>
<tr>
<td>5.3 Formal Concepts of Transporter Function</td>
<td>70</td>
</tr>
<tr>
<td>5.4 Studying Kinetics of Transport Is Useful for Identification and Characterization of Transport Processes</td>
<td>72</td>
</tr>
<tr>
<td>5.5 Energetics of Carrier-mediated Transport: The Concept of Coupling</td>
<td>73</td>
</tr>
<tr>
<td>5.6 There Are Many Different Transport Mechanisms in Prokaryotes</td>
<td>74</td>
</tr>
<tr>
<td>5.7 Regulation and Diversity of Transport Systems</td>
<td>84</td>
</tr>
<tr>
<td>5.8 Secretion of Macromolecules</td>
<td>86</td>
</tr>
</tbody>
</table>

6 Growth and Nutrition

G. Fuchs, A. Kröger

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Growth Characteristics of a Batch Culture Is a Reflection of Cell Physiology</td>
<td>88</td>
</tr>
<tr>
<td>6.2 Physicochemical Factors Affect Growth and More</td>
<td>90</td>
</tr>
<tr>
<td>6.3 Growth Media Provide all Essential Nutrients</td>
<td>95</td>
</tr>
<tr>
<td>6.4 Sterilization of Media and Equipment Are a Must for Maintaining Pure Cultures</td>
<td>99</td>
</tr>
</tbody>
</table>
Section III Diversity of Metabolic Pathways

8 Assimilation of Macroelements and Microelements

8.1 Autotrophic Bacteria Use CO₂ as Sole Source of Carbon .. 163

8.2 Generation of Precursor Metabolites From C₂ Compounds as Carbon Source Requires Specific Reactions .. 173

8.3 Methylotrophic Bacteria Use C₁ Compounds as the Only Carbon Source 174

8.4 Ammonia Can Be Obtained From Various Nitrogen Sources .. 176

8.5 Reduction of N₂ to NH₃ Is Catalyzed by Nitrogenase .. 177

8.6 Assimilation of Phosphorus Does Not Require Redox Reactions 181

8.7 Common Sources of Cell Sulfur Are Sulfate and Thiosulfate 181

8.8 Trace Elements and Electrolytes Are Taken Up By Specific Transport Systems 182

9 Oxidation of Organic Compounds

9.1 Utilization of Polymeric Organic Substrates Depends on Extracellular Steps of Degradation .. 189

9.2 Extracellular Enzymes Are Exported Into the Surrounding Medium or to the Cell Surface ... 189

9.3 Formation and Secretion of Extracellular Enzymes Are Regulated 190

9.4 Intracellular Storage Polymers Are Degraded by Cellular Enzymes 191

9.5 Degradation of Major Polymeric Substrates Into Soluble Products Is Catalyzed by Exoenzymes .. 192

9.6 Lignin Is a Heteropolymer of Phenylpropane Units .. 198