Operational Risk Management
A Practical Approach to Intelligent Data Analysis

Edited by

Ron S. Kenett
KPA Ltd, Raanana, Israel; University of Turin, Italy; and NYU-Poly, Center for Risk Engineering, New York, USA

Yossi Raanan
KPA Ltd, Raanana, Israel; and College of Management, Academic Studies, Rishon Lezion, Israel
Operational Risk Management
Statistics in Practice

Advisory Editors

Human and Biological Sciences
Stephen Senn
University College London, UK

Earth and Environmental Sciences
Marian Scott
University of Glasgow, UK

Industry, Commerce and Finance
Wolfgang Jank
University of Maryland, USA

Founding Editor
Vic Barnett
Nottingham Trent University, UK

Statistics in Practice is an important international series of texts which provide detailed coverage of statistical concepts, methods and worked case studies in specific fields of investigation and study.

With sound motivation and many worked practical examples, the books show in down-to-earth terms how to select and use an appropriate range of statistical techniques in a particular practical field within each title’s special topic area.

The books provide statistical support for professionals and research workers across a range of employment fields and research environments. Subject areas covered include medicine and pharmaceutics; industry, finance and commerce; public services; the earth and environmental sciences, and so on.

The books also provide support to students studying statistical courses applied to the above areas. The demand for graduates to be equipped for the work environment has led to such courses becoming increasingly prevalent at universities and colleges.

It is our aim to present judiciously chosen and well-written workbooks to meet everyday practical needs. Feedback of views from readers will be most valuable to monitor the success of this aim.

A complete list of titles in the series appears at the end of this volume.
Operational Risk Management
A Practical Approach to Intelligent Data Analysis

Edited by

Ron S. Kenett
KPA Ltd, Raanana, Israel; University of Turin, Italy; and
NYU-Poly, Center for Risk Engineering, New York, USA

Yossi Raanan
KPA Ltd, Raanana, Israel; and
College of Management, Academic Studies, Rishon Lezion, Israel

WILEY
A John Wiley and Sons, Ltd., Publication
In memory of Roberto Gagliardi
Contents

- **Foreword** ix
- **Preface** xi
- **Introduction** xviii
- **Notes on Contributors** xxvi
- **List of Acronyms** xxxvi

PART I INTRODUCTION TO OPERATIONAL RISK MANAGEMENT 1

1 **Risk management: a general view** 3
 Ron S. Kenett, Richard Pike and Yossi Raanan
 1.1 Introduction 3
 1.2 Definitions of risk 8
 1.3 Impact of risk 9
 1.4 Types of risk 9
 1.5 Enterprise risk management 10
 1.6 State of the art in enterprise risk management 11
 1.6.1 The negative impact of risk silos 11
 1.6.2 Technology’s critical role 13
 1.6.3 Bringing business into the fold 14
 1.7 Summary 15
 References 17

2 **Operational risk management: an overview** 19
 Yossi Raanan, Ron S. Kenett and Richard Pike
 2.1 Introduction 19
 2.2 Definitions of operational risk management 20
 2.3 Operational risk management techniques 22
 2.3.1 Risk identification 22
PART II DATA FOR OPERATIONAL RISK MANAGEMENT AND ITS HANDLING 39

3 Ontology-based modelling and reasoning in operational risks 41
 Christian Leibold, Hans-Ulrich Krieger and Marcus Spies
 3.1 Introduction 41
 3.1.1 Modules 43
 3.1.2 Conceptual model 43
 3.2 Generic and axiomatic ontologies 47
 3.2.1 Proton extension 47
 3.2.2 Temporal ontologies 48
 3.3 Domain-independent ontologies 50
 3.3.1 Company ontology 50
 3.4 Standard reference ontologies 54
 3.4.1 XBRL 54
 3.4.2 BACH 55
 3.4.3 NACE 55
 3.5 Operational risk management 56
 3.5.1 IT operational risks 56
 3.6 Summary 58
 References 58

4 Semantic analysis of textual input 61
 Horacio Saggion, Thierry Declerck and Kalina Bontcheva
 4.1 Introduction 61
 4.2 Information extraction 62
 4.2.1 Named entity recognition 64
CONTENTS

4.3 The general architecture for text engineering 65
4.4 Text analysis components 66
 4.4.1 Document structure identification 66
 4.4.2 Tokenisation 67
 4.4.3 Sentence identification 67
 4.4.4 Part of speech tagging 67
 4.4.5 Morphological analysis 68
 4.4.6 Stemming 68
 4.4.7 Gazetteer lookup 68
 4.4.8 Name recognition 68
 4.4.9 Orthographic co-reference 69
 4.4.10 Parsing 70
4.5 Ontology support 70
4.6 Ontology-based information extraction 73
 4.6.1 An example application: market scan 74
4.7 Evaluation 75
4.8 Summary 76
References 77

5 A case study of ETL for operational risks 79
 Valerio Grossi and Andrea Romei
 5.1 Introduction 79
 5.2 ETL (Extract, Transform and Load) 81
 5.2.1 Related work 82
 5.2.2 Modeling the conceptual ETL work 82
 5.2.3 Modeling the execution of ETL 83
 5.2.4 Pentaho data integration 83
 5.3 Case study specification 84
 5.3.1 Application scenario 84
 5.3.2 Data sources 85
 5.3.3 Data merging for risk assessment 87
 5.3.4 The issues of data merging in MUSING 89
 5.4 The ETL-based solution 91
 5.4.1 Implementing the ‘map merger’ activity 92
 5.4.2 Implementing the ‘alarms merger’ activity 93
 5.4.3 Implementing the ‘financial merger’ activity 94
 5.5 Summary 95
References 95

6 Risk-based testing of web services 99
 Xiaoying Bai and Ron S. Kenett
 6.1 Introduction 99
 6.2 Background 103
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 Risk-based testing</td>
<td>103</td>
</tr>
<tr>
<td>6.2.2 Web services progressive group testing</td>
<td>104</td>
</tr>
<tr>
<td>6.2.3 Semantic web services</td>
<td>105</td>
</tr>
<tr>
<td>6.3 Problem statement</td>
<td>106</td>
</tr>
<tr>
<td>6.4 Risk assessment</td>
<td>107</td>
</tr>
<tr>
<td>6.4.1 Semantic web services analysis</td>
<td>107</td>
</tr>
<tr>
<td>6.4.2 Failure probability estimation</td>
<td>110</td>
</tr>
<tr>
<td>6.4.3 Importance estimation</td>
<td>112</td>
</tr>
<tr>
<td>6.5 Risk-based adaptive group testing</td>
<td>114</td>
</tr>
<tr>
<td>6.5.1 Adaptive measurement</td>
<td>115</td>
</tr>
<tr>
<td>6.5.2 Adaptation rules</td>
<td>117</td>
</tr>
<tr>
<td>6.6 Evaluation</td>
<td>117</td>
</tr>
<tr>
<td>6.7 Summary</td>
<td>118</td>
</tr>
<tr>
<td>References</td>
<td>121</td>
</tr>
</tbody>
</table>

PART III OPERATIONAL RISK ANALYTICS | 125

7 Scoring models for operational risks | 127
Paolo Giudici

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Background</td>
<td>127</td>
</tr>
<tr>
<td>7.2 Actuarial methods</td>
<td>128</td>
</tr>
<tr>
<td>7.3 Scorecard models</td>
<td>130</td>
</tr>
<tr>
<td>7.4 Integrated scorecard models</td>
<td>133</td>
</tr>
<tr>
<td>7.5 Summary</td>
<td>134</td>
</tr>
<tr>
<td>References</td>
<td>134</td>
</tr>
</tbody>
</table>

8 Bayesian merging and calibration for operational risks | 137
Silvia Figini

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>137</td>
</tr>
<tr>
<td>8.2 Methodological proposal</td>
<td>138</td>
</tr>
<tr>
<td>8.3 Application</td>
<td>141</td>
</tr>
<tr>
<td>8.4 Summary</td>
<td>148</td>
</tr>
<tr>
<td>References</td>
<td>148</td>
</tr>
</tbody>
</table>

9 Measures of association applied to operational risks | 149
Ron S. Kenett and Silvia Salini

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>9.2 The arules R script library</td>
<td>153</td>
</tr>
<tr>
<td>9.3 Some examples</td>
<td>154</td>
</tr>
<tr>
<td>9.3.1 Market basket analysis</td>
<td>154</td>
</tr>
<tr>
<td>9.3.2 PBX system risk analysis</td>
<td>155</td>
</tr>
<tr>
<td>9.3.3 A bank’s operational risk analysis</td>
<td>160</td>
</tr>
<tr>
<td>9.4 Summary</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>166</td>
</tr>
</tbody>
</table>
PART IV OPERATIONAL RISK APPLICATIONS AND INTEGRATION WITH OTHER DISCIPLINES 169

10 Operational risk management beyond AMA: new ways to quantify non-recorded losses 171
Giorgio Aprile, Antonio Pippi and Stefano Visinoni

10.1 Introduction 171
10.1.1 The near miss and opportunity loss project 171
10.1.2 The ‘near miss/opportunity loss’ service 172
10.1.3 Advantage to the user 173
10.1.4 Outline of the chapter 173

10.2 Non-recorded losses in a banking context 174
10.2.1 Opportunity losses 174
10.2.2 Near misses 175
10.2.3 Multiple losses 177

10.3 Methodology 177
10.3.1 Measure the non-measured 177
10.3.2 IT events vs. operational loss classes 178
10.3.3 Quantification of opportunity losses: likelihood estimates 180
10.3.4 Quantification of near misses: loss approach level 181
10.3.5 Reconnection of multiple losses 184

10.4 Performing the analysis: a case study 184
10.4.1 Data availability: source databases 184
10.4.2 IT OpR ontology 186
10.4.3 Critical path of IT events: Bayesian networks 187
10.4.4 Steps of the analysis 189
10.4.5 Outputs of the service 194

10.5 Summary 195
References 196

11 Combining operational risks in financial risk assessment scores 199
Michael Munsch, Silvia Rohe and Monika Jungemann-Dorner

11.1 Interrelations between financial risk management and operational risk management 199

11.2 Financial rating systems and scoring systems 200

11.3 Data management for rating and scoring 202

11.4 Use case: business retail ratings for assessment of probabilities of default 204

11.5 Use case: quantitative financial ratings and prediction of fraud 208

11.6 Use case: money laundering and identification of the beneficial owner 210

11.7 Summary 213
References 214
CONTENTS

12 Intelligent regulatory compliance

Marcus Spies, Rolf Gubser and Markus Schacher

12.1 Introduction to standards and specifications for business governance

12.2 Specifications for implementing a framework for business governance

12.2.1 Business motivation model

12.2.2 Semantics of business vocabulary and business rules

12.3 Operational risk from a BMM/SBVR perspective

12.4 Intelligent regulatory compliance based on BMM and SBVR

12.4.1 Assessing influencers

12.4.2 Identify risks and potential rewards

12.4.3 Develop risk strategies

12.4.4 Implement risk strategy

12.4.5 Outlook: build adaptive IT systems

12.5 Generalization: capturing essential concepts of operational risk in UML and BMM

12.6 Summary

References

13 Democratisation of enterprise risk management

Paolo Lombardi, Salvatore Piscuoglio, Ron S. Kenett, Yossi Raanan and Markus Lankinen

13.1 Democratisation of advanced risk management services

13.2 Semantic-based technologies and enterprise-wide risk management

13.3 An enterprise-wide risk management vision

13.4 Integrated risk self-assessment: a service to attract customers

13.5 A real-life example in the telecommunications industry

13.6 Summary

References

14 Operational risks, quality, accidents and incidents

Ron S. Kenett and Yossi Raanan

14.1 The convergence of risk and quality management

14.2 Risks and the Taleb quadrants

14.3 The quality ladder

14.4 Risks, accidents and incidents

14.5 Operational risks in the oil and gas industry

14.6 Operational risks: data management, modelling and decision making

14.7 Summary

References

Index
Foreword

The recognition from the Basel Committee of Banking Supervisors of operational risks as a separate risk management discipline has promoted in the past years intense and fruitful discussions, both inside and outside the banking and financial sectors, on how operational risks can be managed, assessed and prevented, or at least mitigated.

However, for several reasons, including the fact that operational risks appear at the same time multifaceted and of a somewhat indefinite shape, inadequate attention has been given so far to what operational risks really are, and to how they can be correctly identified and captured.

Indeed, the first objective of a risk management programme is to identify clearly the playing field to where investments and resources should be directed. This is even more important for operational risk management, since its scope crosses all industry sectors and all types of firms and the fact that it essentially originates from those variables that constitute the heart of any organization: people, processes and systems.

This book attempts to give an appropriate level of attention to this significant topic by using an interdisciplinary, integrated and innovative approach.

The methodologies and techniques outlined here, reading ‘behind and beyond’ operational risks, aim to move forward in the interpretation of this type of risk and of the different ways it can reveal. The objective of capturing knowledge on operational risk, rather than just information, is crucial for the building of sound processes for its management, assessment and prevention or mitigation.

Another noteworthy feature of this work is the effort – pursued by providing practical examples of implementation of an operational risk framework (or part of it) in different industry sectors – to demonstrate how concepts, techniques and methodologies developed in a specific field, for the handling of operational risks, can be adopted in (or adapted to) other industrial domains. If considered all together, these aspects can significantly contribute to make this discipline evolve towards high, sustainable and convergent standards and, above all, to change its nature from (a bit less) ‘art’ to (a bit more) ‘science’, which, in the end, is the ultimate objective that all operational risk managers are trying to achieve.

Marco Moscadelli
Bank of Italy and Committee of European Banking Supervisors