Parlay/OSA
From Standards to Reality

Musa Unmehopa, Lucent Technologies, Bell Labs Innovations, The Netherlands
Kumar Vemuri, Lucent Technologies, Bell Labs Innovations, USA
Andy Bennett, Lucent Technologies, Bell Labs Innovations, UK
Parlay/OSA
Parlay/OSA
From Standards to Reality

Musa Unmehopa, Lucent Technologies, Bell Labs Innovations, The Netherlands
Kumar Vemuri, Lucent Technologies, Bell Labs Innovations, USA
Andy Bennett, Lucent Technologies, Bell Labs Innovations, UK
Trademarks and Permissions

3GPP™, PLUGTESTSTM, TIPHON™, and UMTSTM are trademarks of ETSI.
CORBA®, UML®, and XMI®, and Unified Modeling Language™ are either registered trademarks or trademarks of Object Management Group, Inc. in the United States and/or other countries.
J2EE™, J2SE™, JAIN™, and Java™ are trademarks of Sun Microsystems, Inc. in the United States and other countries.
ANSM™ is a registered trademark of the American National Standards Institute.
W3C® is a registered trademark of the World Wide Web Consortium, registered in numerous countries.
Microsoft.NET™ is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
Open Mobile Alliance™, WAP Forum™, and ‘Wireless Village™’ are trademarks of Open Mobile Alliance Ltd.
Portions of this text pertaining to Parlay APIs and specifications reprinting with permission of The Parlay Group, Inc.
To Odette and Aron M.U.
To Sai and Family K.V.
To Katie, Eleanor, Ewan and Matthew A.B.
Contents

Trademarks and Permissions v
About the Authors xvii
A Note to the Reader xix
Acknowledgments xxi

End-user Scenarios xxiii
Scenario 1: The Operator’s Perspective xxiii
Scenario 2: The Application Developer’s Perspective xxiv
Scenario 3: End-user Perspective xxiv
Scenario 4: Yet more perspectives xxiv
News Flash (Sometime During 2005–2006) xxiv
Scenario 5: The Future xxv

Part I Background and Introduction 1

1 The Internet is Calling – Today’s Network Ecosystems and Their Evolution 3
1.1 Introduction 3
1.2 Traditional Telephony and Intelligent Networks 4
1.3 Signaling 7
 1.3.1 Signaling and Standards Bodies 8
 1.3.2 Some Examples of Signaling Protocols 9
1.4 A Foray into Other Network and Service Architectures 10
 1.4.1 Voice over the Internet Protocol (VoIP) 10
 1.4.2 Converged Networks 11
 1.4.3 Internet Access via the PSTN 13
1.5 Wireless Networks and Generations of Technology 13
 1.5.1 Cellular Communication 15
 1.5.2 Wireless Networks and their Elements 15
 1.5.3 Evolution of 2nd Generation Wireless Systems 17
 1.5.4 Third Generation Wireless Systems 18
 1.5.5 CDMA Network Evolution 18
1.6 The IP Multimedia Subsystem (IMS) 20
 1.6.1 A Standards View 20
 1.6.2 Simplified View of the IMS Architecture 21
 1.6.3 Service Control in IMS 23
1.7 Related Technologies

1.7.1 WAP Technology
1.7.2 Location Based Services
1.7.3 Short Message Service and Multi-media Messaging

1.8 Summary

2 The Need for New Technologies

2.1 Introduction
2.2 Issues with Networks Today or The Drive to Improve
2.2.1 Network Operators
2.2.2 Application Provider
2.2.3 End-users or Subscribers
2.3 Summary: Required Characteristics of a Desirable Solution Technology

3 Follow the Yellow Brick Road

3.1 Introduction
3.2 Of ‘Smoke-Stacks’, Value-Chains, and Service Layers
3.3 The Programmable Network
3.4 Services and Applications
3.5 Developing a Satisfactory Solution Architecture
3.5.1 Reducing Integration Costs, Faster Development Cycles
3.5.2 More Efficient Application Development, Reuse across Network Types
3.5.3 Lowered OPEX, Shared-hosting Models
3.5.4 More Effective Use of Deployed Legacy Systems, Evolution Independence
3.6 Service Mediation and Mediation Gateways
3.7 Service Mediation Example
3.7.1 User Experience
3.7.2 Network Operation
3.8 Summary

4 Parlay and OSA

4.1 Introduction
4.2 The Need for Standards
4.3 The Parlay Family Tree
4.3.1 The Cradle
4.3.2 Early Childhood
4.3.3 The Wonder Years
4.3.4 Maturity?
4.3.5 Non-identical Twins
4.4 The Standards Themselves
4.4.1 The Common UML Model
4.4.2 Technology Realizations
4.4.3 Versioning Schemes and How They Relate
4.4.4 The Specification Series
4.4.5 Specifications and Recommendations
4.5 Summary
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>The Client Application</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>The SCS</td>
<td>63</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Translation</td>
<td>63</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Beyond Translation</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>The Framework</td>
<td>66</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Are You Really Who You Say You Are?</td>
<td>67</td>
</tr>
<tr>
<td>5.4.2</td>
<td>The Access Session</td>
<td>67</td>
</tr>
<tr>
<td>5.5</td>
<td>All Together Now</td>
<td>71</td>
</tr>
<tr>
<td>5.5.1</td>
<td>SCS Registration and Announcement</td>
<td>72</td>
</tr>
<tr>
<td>5.5.2</td>
<td>SCS Discovery</td>
<td>74</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Service Selection</td>
<td>76</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Signing on the Dotted Line</td>
<td>76</td>
</tr>
<tr>
<td>5.5.5</td>
<td>The Parlay Triangle Revisited</td>
<td>77</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Managing the Session</td>
<td>77</td>
</tr>
<tr>
<td>5.6</td>
<td>The Enterprise Operator</td>
<td>82</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Key Parlay Subscription Model Concepts</td>
<td>82</td>
</tr>
<tr>
<td>5.6.2</td>
<td>The Enterprise Operator Interfaces</td>
<td>84</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary</td>
<td>85</td>
</tr>
</tbody>
</table>

Part II The Standards in Detail

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>6.2</td>
<td>Part 1 – Overview</td>
<td>89</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Versions and Releases</td>
<td>90</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Methodology</td>
<td>90</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Interface Design Principles</td>
<td>91</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Shapes and Forms</td>
<td>91</td>
</tr>
<tr>
<td>6.3</td>
<td>Part 2 – Common Data Types</td>
<td>92</td>
</tr>
<tr>
<td>6.4</td>
<td>Part 3 – Framework (FWK)</td>
<td>92</td>
</tr>
<tr>
<td>6.5</td>
<td>Part 4 – Call Control (CC)</td>
<td>92</td>
</tr>
<tr>
<td>6.5.1</td>
<td>GCCS</td>
<td>94</td>
</tr>
<tr>
<td>6.5.2</td>
<td>MPCCS</td>
<td>98</td>
</tr>
<tr>
<td>6.5.3</td>
<td>MMCCS</td>
<td>99</td>
</tr>
<tr>
<td>6.5.4</td>
<td>CCCS</td>
<td>99</td>
</tr>
<tr>
<td>6.6</td>
<td>Part 5 – User Interaction (UI)</td>
<td>99</td>
</tr>
<tr>
<td>6.7</td>
<td>Part 6 – Mobility Management (MM)</td>
<td>103</td>
</tr>
<tr>
<td>6.7.1</td>
<td>User Location</td>
<td>103</td>
</tr>
<tr>
<td>6.7.2</td>
<td>User Location Camel</td>
<td>104</td>
</tr>
<tr>
<td>6.7.3</td>
<td>User Location Emergency</td>
<td>106</td>
</tr>
<tr>
<td>6.7.4</td>
<td>User Status</td>
<td>106</td>
</tr>
<tr>
<td>6.8</td>
<td>Part 7 – Terminal Capabilities (TC)</td>
<td>108</td>
</tr>
<tr>
<td>6.9</td>
<td>Part 8 – Data Session Control (DSC)</td>
<td>109</td>
</tr>
<tr>
<td>6.10</td>
<td>Part 11 – Account Management (AM)</td>
<td>110</td>
</tr>
<tr>
<td>6.11</td>
<td>Part 12 – Content Based Charging (CBC)</td>
<td>112</td>
</tr>
<tr>
<td>6.11.1</td>
<td>Service Considerations</td>
<td>114</td>
</tr>
<tr>
<td>6.11.2</td>
<td>Reliability Considerations</td>
<td>114</td>
</tr>
</tbody>
</table>
6.12 Part 13 – Policy Management (PM) 115
6.12.1 Service Scenarios 115
6.12.2 Operations Scenarios 117
6.12.3 Service Properties versus Policies 118
6.12.4 Business Opportunities 118
6.12.5 The Policy Management Interfaces 118
6.13 Part 14 – Presence and Availability Management (PAM) 120
6.14 Other Standards-defined SCFs 123
6.14.1 The Generic Messaging Service (GMS) 123
6.14.2 The Connectivity Manager (CM) 123
6.14.3 The MultiMedia Messaging Service (MMM) 123
6.15 Support for Non-Standard SCSs and Value-Added Extensions* 124
6.15.1 Standards-defined and Proprietary SCSs 124
6.15.2 Standards Directions 124
6.15.3 Example Proprietary SCFs 125
6.16 Summary 126

7 Standards Capabilities and Directions II – Scenarios and Details 127
7.1 Introduction 127
7.2 The Parlay Ecosystem and Value-Chain 127
7.3 Example Scenario 129
7.4 Under the Covers – How it Actually Works 130
7.5 Mapping APIs to Protocols 131
7.6 Toolkits for Application Development 135
7.7 Mixed Mode Applications 136
7.8 Summary 137

8 Standards Capabilities and Directions III – The Lay of the Land 139
8.1 Introduction 139
8.2 Navigation 139
8.3 Parlay in 3GPP Environments 140
8.3.1 The Service Concepts 140
8.3.2 The Overall 3GPP Architecture 141
8.3.3 Services Making Use of OSA 142
8.3.4 The Stages of OSA 142
8.4 Parlay in 3GPP2 Environments 143
8.4.1 The Overall 3GPP2 Architecture 143
8.4.2 OSA in 3GPP2 145
8.5 Summary 145

Part III Building a Service Mediation Gateway 147

9 Alternative Architectures 149
9.1 Introduction 149
9.2 Standard Architectural Alternatives 149
9.2.1 Embedded Approach 150
9.2.2 Gateway Approach 150
9.2.3 Hybrid Approach
9.2.4 Discussing the Merits of Standard Architecture Alternatives
9.3 Advanced Architecture Patterns∗
9.3.1 Multiple Cloned SCSs
9.3.2 Some Practical Implementation-related Considerations
9.3.3 Distributed SCSs
9.3.4 Tiering of Multiple Cloned SCSs
9.3.5 Getting Practical with Architecture Patterns
9.4 Summary

10 Considerations for Building ‘Carrier-Grade’ Systems
10.1 Introduction
10-1 Reflections on the Performance of Implementations
10-1.1 Introduction and Scope
10-1.2 Performance Aspects
10-1.3 Performance Computation – Flow Composition
10-1.4 Performance Computation – Transaction ‘Mix’
10-1.5 Performance Computation – Abstract Models∗
10-1.6 Performance Computation – Round Trip Times
10-1.7 Performance Verification and Validation – Tuning the Code, Measurements
10-1.8 Performance Engineering for Deployments
10-1.9 Summary
10-2 Overload Handling Considerations
10-2.1 Introduction
10-2.2 What is Ideal, What is Practical?
10-2.3 General Patterns for Overload Control
10-2.3.1 New Work Before Old
10-2.3.2 Shed Load at the Periphery
10-2.3.3 Evaluate Overload Globally
10-2.4 Overload and Parlay Gateways
10-2.4.1 Overload Detection, Reporting, and Handling
10-2.4.2 Parlay Gateway Related Considerations
10-2.5 Summary
10-3 On the Scalability and Reliability of Implementations
10-3.1 What are High Availability and Reliability? Why Consider Scalability?
10-3.2 Reliability and High Availability of Parlay – Applications and Gateways
10-3.3 Scalability and Reliability
10-3.3.1 Engineering for Scalability and Reliability
10-3.4 Parlay Considerations
10-3.4.1 Building HA Parlay Applications
10-3.5 Summary
10-4 Failure Handling in Parlay/OSA Environments
10-4.1 Introduction
10-4.2 A Layered Software Architecture – Again...
10-4.3 A Layered View of Errors?
10-4.4 Summary