MPEG-4 Facial Animation

The Standard, Implementation
and Applications
MPEG-4 Facial Animation

The Standard, Implementation and Applications

Edited by

Igor S. Pandzic and Robert Forchheimer

Linköping University, Sweden
Contents

List of Contributors ... xiii
Author Biographies ... xvii
Foreword ... xxv
Preface .. xxvii

PART 1 BACKGROUND .. 1

1 The Origins of the MPEG-4 Facial Animation Standard 3

Igor S. Pandzic and Robert Forchheimer

Abstract .. 3
1.1 Introduction ... 3
1.2 The Need for Parameterization 5
1.3 The Ideal Parameterization 7
1.4 Is MPEG-4 FA up to the Ideal? 8
 1.4.1 Conclusion 10
1.5 Brief History of Facial Control Parameterization 10
1.6 The Birth of the Standard 11
 Acknowledgments 12
 References ... 12

PART 2 THE STANDARD .. 15

2 Face Animation in MPEG-4 17

Jörn Ostermann

Abstract .. 17
2.1 Introduction ... 17
2.2 Specification and Animation of Faces 18
 2.2.1 MPEG-4 Face Model in Neutral State 19
 2.2.2 Face Animation Parameters 20
 2.2.3 Face Model Specification 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Coding of Face Animation Parameters</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1 Arithmetic Coding of FAPs</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2 DCT Coding of FAPs</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3 FAP Interpolation Tables</td>
<td>32</td>
</tr>
<tr>
<td>2.4 Integration of Face Animation and Text-to-Speech Synthesis</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Integration with MPEG-4 Systems</td>
<td>36</td>
</tr>
<tr>
<td>2.6 MPEG-4 Profiles for Face Animation</td>
<td>38</td>
</tr>
<tr>
<td>2.7 Conclusion</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>Annex</td>
<td>41</td>
</tr>
<tr>
<td>3 MPEG-4 Face Animation Conformance</td>
<td>57</td>
</tr>
<tr>
<td>Eric Petajan</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2 MPEG Conformance Principles</td>
<td>57</td>
</tr>
<tr>
<td>3.3 MPEG-4 Profile Architecture</td>
<td>58</td>
</tr>
<tr>
<td>3.4 The Minimum Face</td>
<td>58</td>
</tr>
<tr>
<td>3.5 Graphics Profiles</td>
<td>61</td>
</tr>
<tr>
<td>3.6 Conformance Testing</td>
<td>61</td>
</tr>
<tr>
<td>3.7 Summary</td>
<td>61</td>
</tr>
<tr>
<td>PART 3 IMPLEMENTATIONS</td>
<td>63</td>
</tr>
<tr>
<td>4 MPEG-4 Facial Animation Framework for the Web and Mobile Applications</td>
<td>65</td>
</tr>
<tr>
<td>Igor S. Pandzic</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>65</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>4.2 The Facial Animation Player</td>
<td>67</td>
</tr>
<tr>
<td>4.3 Producing Animatable Face Models</td>
<td>70</td>
</tr>
<tr>
<td>4.4 The Facial Motion Cloning Method</td>
<td>70</td>
</tr>
<tr>
<td>4.4.1 Interpolation from 2-D Triangle Mesh</td>
<td>71</td>
</tr>
<tr>
<td>4.4.2 Normalizing the Face</td>
<td>72</td>
</tr>
<tr>
<td>4.4.3 Computing Facial Motion</td>
<td>72</td>
</tr>
<tr>
<td>4.4.4 Aligning Source and Target Ace</td>
<td>73</td>
</tr>
<tr>
<td>4.4.5 Mapping Facial Motion</td>
<td>74</td>
</tr>
<tr>
<td>4.4.6 Antialiasing</td>
<td>74</td>
</tr>
<tr>
<td>4.4.7 Treating the Lip Region</td>
<td>75</td>
</tr>
<tr>
<td>4.4.8 Treating Eyes, Teeth, Tongue and Global Motion</td>
<td>75</td>
</tr>
<tr>
<td>4.4.9 Facial Motion Cloning Results</td>
<td>76</td>
</tr>
<tr>
<td>4.5 Producing Facial Animation Content</td>
<td>77</td>
</tr>
<tr>
<td>4.6 Conclusion</td>
<td>78</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>79</td>
</tr>
<tr>
<td>References</td>
<td>79</td>
</tr>
</tbody>
</table>
5 The Facial Animation Engine

Fabio Lavagetto and Roberto Pockaj

5.1 Introduction 81
5.2 The FAE Block Diagram 81
5.3 The Face Model 82
 5.3.1 Mesh Geometry Description 82
 5.3.2 Mesh Semantics Description 83
 5.3.3 The Model Authoring Tool 83
 5.3.4 Sample Face Models 84
5.4 The Mesh Animation Block 84
 5.4.1 Animation Results 87
5.5 The Mesh Calibration Block 87
 5.5.1 Multilevel Calibration with RBF 88
 5.5.2 Calibration with Texture 90
 5.5.3 Calibration Results 90
5.6 The Mesh Simplification Block 91
 5.6.1 Iterative Edge Contraction and Quadric Error Metric 91
 5.6.2 Simplification of MPEG-4 Animated Faces 93
 5.6.3 Simplification with Textures 94
 5.6.4 Simplification Results 94
5.7 The FAP Decoding Block 95
 5.7.1 FAP Interpolation 95
5.8 The Audio Decoding Block 98
5.9 The Implementation 98
 5.9.1 Performances 100
References 101

6 Extracting MPEG-4 FAPS from Video

Jörgen Ahlberg

6.1 Introduction 103
6.2 Methods for Detection and Tracking of Faces 103
6.3 Active and Statistical Models of Faces 104
 6.3.1 The Active Appearance Model Search Algorithm 105
 6.3.2 Training for Active Appearance Model Search 106
6.4 An Active Model for Face Tracking 106
 6.4.1 Analysis – Synthesis 107
 6.4.2 Collecting Training Data 108
 6.4.3 Tracking a Face with the Active Model 109
6.5 The Color-Based Face-Finding Algorithm 109
6.6 Implementation 110
6.7 Results 110
6.8 Improvements 111
6.9 Conclusion 112
Acknowledgment 112
References 112
7 Real-Time Speech-Driven Face Animation 115
Pengyu Hong, Zhen Wen and Thomas S. Huang
Abstract 115
7.1 Introduction 115
7.2 Motion Units – The Visual Representation 117
7.3 MUPs and MPEG-4 FAPs 119
7.4 Real-Time Audio-to-MUP Mapping 119
7.5 Experimental Results 120
7.6 The iFace System 122
7.7 Conclusion 123
References 123

8 Visual Text-to-Speech 125
Catherine Pelachaud
Abstract 125
8.1 Introduction 125
8.2 Lip Shapes 126
8.2.1 Visemes 126
8.2.2 Labial Parameters 127
8.3 Audiovisual Speech 127
8.4 Coarticulation 132
8.4.1 Models of Coarticulation 132
8.5 Tongue Movement 134
8.6 Facial Model 134
8.7 Conclusion 138
Acknowledgment 138
References 138

9 Emotion Recognition and Synthesis Based on MPEG-4 FAPs 141
Nicolas Tsapatsoulis, Amaryllis Raouzaiou, Stefanos Kollias, Roddy Cowie and Ellen Douglas-Cowie
Abstract 141
9.1 Introduction 142
9.2 Description of the Archetypal Expressions Using FAPs 144
9.3 The Range of Variation of FAPs in Real Video Sequences 146
9.3.1 Modeling FAPs through the Movement of Facial Points 147
9.3.2 Vocabulary Verification 147
9.3.3 Creating Archetypal Expression Profiles 151
9.4 Creating Profiles for Nonarchetypal Expressions 156
9.4.1 Universal Emotion Categories 156
9.4.2 Intermediate Emotions 159
9.5 The Emotion Analysis System 160
9.6 Experimental Results 162
9.6.1 Creating Profiles for Emotions Belonging to a Universal Category 163
9.6.2 Creating Profiles for Nonarchetypal Emotions 164
9.7 Conclusion–Discussion 165
References 167

10 The InterFace Software Platform for Interactive Virtual Characters 169
Igor S. Pandzic, Michele Cannella, Franck Davoine, Robert Forchheimer, Fabio Lavagetto, Haibo Li, Andrew Marriott, Sotiris Malassiotis, Montse Pardas, Roberto Pockaj and Gael Sannier

Abstract 169
10.1 Introduction 169
10.2 Reasoning Behind the Interface Platform 170
 10.2.1 Requirements 170
 10.2.2 Possible Solutions 171
 10.2.3 The Chosen Solution 172
10.3 Network Common Software Platform (N-CSP) 174
10.4 Integrated Common Software Platform (I-CSP) 175
 10.4.1 The Server 176
 10.4.2 The Input Module of the Client 178
 10.4.3 The Output Module of the Client 181
10.5 Conclusion 182
Acknowledgment 182
References 182

PART 4 APPLICATIONS 185

11 Model-based Coding: The Complete System 187
Haibo Li and Robert Forchheimer
11.1 History 187
11.2 Coding Principle and Architectures 188
 11.2.1 The MDL Principle 188
 11.2.2 Coding Architectures 189
11.3 Modeling 192
 11.3.1 Facial Shape Modeling 192
 11.3.2 Facial Expressions 194
 11.3.3 Facial Motion Modeling 196
 11.3.4 Facial Texture Modeling 199
 11.3.5 Camera Model 201
 11.3.6 Illuminace Modeling 202
 11.3.7 Parameter Summary 203
11.4 Parameter Estimation 204
 11.4.1 Parameter Search 205
 11.4.2 Forward or Backward Difference? 206
 11.4.3 How to Choose a Suitable Cost Function E(w) 207
 11.4.4 Optimization Techniques 209
11.5 Successive Estimation 211
 11.5.1 Recursive Motion Estimation 211
 11.5.2 Tracking System Based on the ABS Principle 212
 11.5.3 Tracking System Based on Kalman Filtering 212
 11.5.4 Tracking System Based on a Combination of ABS and Kalman Filtering 214
11.6 Hybrid Coding 214
11.7 Conclusion 215
References 215

12 A Facial Animation Case Study for HCI: The VHML-Based Mentor System 219
Andrew Marriott
12.1 Talking Head Interfaces 221
12.2 First Observations 222
12.3 Design of a More Believable TH, Experiments and Evaluation 223
 12.3.1 Virtual Human Markup Language (VHML) 224
12.4 Second Observations, Experiment One and Evaluation 224
12.5 The Mentor System 225
12.6 Talking Heads as Intelligent User Interfaces 228
 12.6.1 Rendering 230
12.7 Third Observations, Experiment Two and Evaluation 230
12.8 Dialogue Management Tool (DMT) 232
12.9 Discussion and Evaluation 234
 12.9.1 Results 234
12.10 Future Experiments 235
12.11 Future Work 236
12.12 Conclusion 237
 Acknowledgement 238
 References 239

13 PlayMail – Put Words into Other People’s Mouth 241
Jörn Ostermann
Abstract 241
13.1 Introduction 241
13.2 System Architecture 242
13.3 Playmail Messages 243
13.4 Playmail Face Model Creation 245
 13.4.1 User Interface 246
 13.4.2 Interpolation Function 247
 13.4.3 Algorithm 249
13.5 Conclusion 250
 References 250

14 E-Cogent: An Electronic Convincing aGENT 253
Jörn Ostermann
Abstract 253
14. Introduction

14.1 Introduction 253

14.2 ‘Social Dilemma’ Game Experiment 254

14.2.1 Experimental Setup 255

14.2.2 Experimental Results 255

14.3 Architectures for Web-Based Applications Using TTS and Facial Animation

14.3.1 Client with TTS and Face Animation Renderer 257

14.3.2 Client with Face Animation Renderer 258

14.4 Visual Dialog 260

14.5 Conclusion 262

Acknowledgments 263

References 263

15 alterEGO: Video Analysis for Facial Animation

Eric Petajan

15.1 System Overview 265

15.2 Face Tracking Initialization 265

15.3 Nostril Tracking 266

15.4 The Mouth Window 267

15.5 The Eye Window 268

15.6 Lip and Teeth Color Estimation 268

15.7 The Inner Lip Contour 268

15.8 The FAP Estimation 268

15.9 FAP Smoothing 268

15.10 Animating Faces with FAPs 269

15.11 Summary 271

References 271

16 EPTAMEDIA: Virtual Guides and Other Applications

Fabio Lavagetto and Roberto Pockaj

16.1 EPTAMEDIA Srl 273

16.2 EptaPlayer: How Content is Rendered 274

16.3 EptaPublisher: How Content is Authored 275

16.3.1 EptaPublisher-Text 276

16.3.2 EptaPublisher-Live 277

16.3.3 EptaPublisher-Voice 278

16.4 Possible Applications 279

16.4.1 E-commerce Applications 280

16.4.2 Multimedia Contents Production 281

16.4.3 Web Virtual Guides 281

16.4.4 Newscasting 281

16.4.5 Tele-Learning 281

16.4.6 Entertainment 283

16.4.7 Web Call Centers 285

16.4.8 Synthetic Video Over Mobile 285
Appendices

1 Evaluating MPEG-4 Facial Animation Players 287
 Jörgen Ahlberg, Igor S. Pandzic and Liwen You

2 Web Resources 293

Index 295
List of Contributors

Jörgen Ahlberg
Department of Electrical Engineering
Linköping University
SE-581 83 Linköping
Sweden
ahlberg@isy.liu.se

Michele Cannella
TAU Tecnologia Automazione Uomo
s.c.r.l.
Via XX Settembre 3/6
16121 Genova
Italy
michele.cannella@tetralab.it
michele.cannella@tau-online.it

Roddy Cowie
Queen’s University of Belfast
Belfast, N. Ireland
r.cowie@qub.ac.uk

Ellen Douglas-Cowie
Queen’s University of Belfast
Belfast, N. Ireland
edouglas-cowie@qub.ac.uk

Franck Davoine
Université de Technologie de
Compiègne
Laboratoire Heudiasyc, BP20529
60205 France
Franck.Davoine@hds.utc.fr

Robert Forchheimer
Department of Electrical Engineering
Linköping University
SE-581 83 Linköping
Sweden
Robert@isy.liu.se

Pengyu Hong
1614 Beckman Institute
Urbana IL61801
hong@ifp.uiuc.edu

Thomas S. Huang
2039 Beckman Institute
Urbana IL61801
huang@ifp.uiuc.edu

Stefanos Kollias
Image, Video and Multimedia Systems Laboratory
National Technical University of Athens
Electrical & Computer Engineering Department
Computer Science Division
ECE Building – 1st Floor – Room 11.23
Athens, Greece
Stefanos@cs.ntua.gr

Fabio Lavagetto
Università degli Studi di Genova
Dipartimento di Informatica, Sistemistica e Telematica
Via all’Opera Pia 13
16145 Genova, Italy
fabio@dist.unige.it