Modelling Single-name and Multi-name Credit Derivatives

Dominic O’Kane
Modelling Single-name and Multi-name Credit Derivatives
For other titles in the Wiley Finance series
please see www.wiley.com/finance
To Penny, Rory and Fergal.
Contents

Acknowledgements xiii
About the Author xv
Introduction xvii
Notation xix

1 The Credit Derivatives Market 1
 1.1 Introduction 1
 1.2 Market Growth 2
 1.3 Products 4
 1.4 Market Participants 6
 1.5 Summary 7

2 Building the Libor Discount Curve 9
 2.1 Introduction 9
 2.2 The Libor Index 9
 2.3 Money Market Deposits 10
 2.4 Forward Rate Agreements 12
 2.5 Interest Rate Futures 13
 2.6 Interest Rate Swaps 16
 2.7 Bootstrapping the Libor Curve 21
 2.8 Summary 26
 2.9 Technical Appendix 26

PART I SINGLE-NAME CREDIT DERIVATIVES 29

3 Single-name Credit Modelling 31
 3.1 Introduction 31
 3.2 Observing Default 32
 3.3 Risk-neutral Pricing Framework 35
 3.4 Structural Models of Default 38
 3.5 Reduced Form Models 42
 3.6 The Hazard Rate Model 44

Contents

8 CDS Risk Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>8.2 Market Risks of a CDS Position</td>
<td>127</td>
</tr>
<tr>
<td>8.3 Analytical CDS Sensitivities</td>
<td>128</td>
</tr>
<tr>
<td>8.4 Full Hedging of a CDS Contract</td>
<td>138</td>
</tr>
<tr>
<td>8.5 Hedging the CDS Spread Curve Risk</td>
<td>139</td>
</tr>
<tr>
<td>8.6 Hedging the Libor Curve Risk</td>
<td>145</td>
</tr>
<tr>
<td>8.7 Portfolio Level Hedging</td>
<td>147</td>
</tr>
<tr>
<td>8.8 Counterparty Risk</td>
<td>148</td>
</tr>
<tr>
<td>8.9 Summary</td>
<td>149</td>
</tr>
</tbody>
</table>

9 Forwards, Swaptions and CMDS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>151</td>
</tr>
<tr>
<td>9.2 Forward Starting CDS</td>
<td>151</td>
</tr>
<tr>
<td>9.3 The Default Swaption</td>
<td>156</td>
</tr>
<tr>
<td>9.4 Constant Maturity Default Swaps</td>
<td>169</td>
</tr>
<tr>
<td>9.5 Summary</td>
<td>180</td>
</tr>
</tbody>
</table>

PART II MULTI-NAME CREDIT DERIVATIVES

10 CDS Portfolio Indices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>183</td>
</tr>
<tr>
<td>10.2 Mechanics of the Standard Indices</td>
<td>184</td>
</tr>
<tr>
<td>10.3 CDS Portfolio Index Valuation</td>
<td>188</td>
</tr>
<tr>
<td>10.4 The Index Curve</td>
<td>190</td>
</tr>
<tr>
<td>10.5 Calculating the Intrinsic Spread of an Index</td>
<td>192</td>
</tr>
<tr>
<td>10.6 The Portfolio Swap Adjustment</td>
<td>195</td>
</tr>
<tr>
<td>10.7 Asset-backed and Loan CDS Indices</td>
<td>200</td>
</tr>
<tr>
<td>10.8 Summary</td>
<td>201</td>
</tr>
</tbody>
</table>

11 Options on CDS Portfolio Indices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>203</td>
</tr>
<tr>
<td>11.2 Mechanics</td>
<td>203</td>
</tr>
<tr>
<td>11.3 Valuation of an Index Option</td>
<td>207</td>
</tr>
<tr>
<td>11.4 An Arbitrage-free Pricing Model</td>
<td>209</td>
</tr>
<tr>
<td>11.5 Examples of Pricing</td>
<td>213</td>
</tr>
<tr>
<td>11.6 Risk Management</td>
<td>215</td>
</tr>
<tr>
<td>11.7 Black’s Model Revisited</td>
<td>215</td>
</tr>
<tr>
<td>11.8 Summary</td>
<td>217</td>
</tr>
</tbody>
</table>

12 An Introduction to Correlation Products

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>219</td>
</tr>
<tr>
<td>12.2 Default Baskets</td>
<td>219</td>
</tr>
<tr>
<td>12.3 Leveraging the Spread Premia</td>
<td>227</td>
</tr>
<tr>
<td>12.4 Collateralised Debt Obligations</td>
<td>230</td>
</tr>
<tr>
<td>12.5 The Single-tranche Synthetic CDO</td>
<td>232</td>
</tr>
<tr>
<td>12.6 CDOs and Correlation</td>
<td>236</td>
</tr>
<tr>
<td>12.7 The Tranche Survival Curve</td>
<td>237</td>
</tr>
</tbody>
</table>
12.8 The Standard Index Tranches 240
12.9 Summary 240

13 The Gaussian Latent Variable Model 241
13.1 Introduction 241
13.2 The Model 241
13.3 The Multi-name Latent Variable Model 243
13.4 Conditional Independence 246
13.5 Simulating Multi-name Default 248
13.6 Default Induced Spread Dynamics 253
13.7 Calibrating the Correlation 257
13.8 Summary 258

14 Modelling Default Times using Copulas 261
14.1 Introduction 261
14.2 Definition and Properties of a Copula 261
14.3 Measuring Dependence 264
14.4 Rank Correlation 265
14.5 Tail Dependence 269
14.6 Some Important Copulae 270
14.7 Pricing Credit Derivatives from Default Times 278
14.8 Standard Error of the Breakeven Spread 280
14.9 Summary 281
14.10 Technical Appendix 282

15 Pricing Default Baskets 283
15.1 Introduction 283
15.2 Modelling First-to-default Baskets 283
15.3 Second-to-default and Higher Default Baskets 291
15.4 Pricing Baskets using Monte Carlo 294
15.5 Pricing Baskets using a Multi-Factor Model 296
15.6 Pricing Baskets in the Student-t Copula 298
15.7 Risk Management of Default Baskets 299
15.8 Summary 301

16 Pricing Tranches in the Gaussian Copula Model 303
16.1 Introduction 303
16.2 The LHP Model 303
16.3 Drivers of the Tranche Spread 308
16.4 Accuracy of the LHP Approximation 312
16.5 The LHP Model with Tail Dependence 313
16.6 Summary 314
16.7 Technical Appendix 314

17 Risk Management of Synthetic Tranches 317
17.1 Introduction 317
17.2 Systemic Risks 318
17.3 The LH+ Model 324
17.4 Idiosyncratic Risks 328
17.5 Hedging Tranches 334
17.6 Summary 339
17.7 Technical Appendix 339

18 **Building the Full Loss Distribution** 343
18.1 Introduction 343
18.2 Calculating the Tranche Survival Curve 343
18.3 Building the Conditional Loss Distribution 345
18.4 Integrating over the Market Factor 353
18.5 Approximating the Conditional Portfolio Loss Distribution 354
18.6 A Comparison of Methods 360
18.7 Perturbing the Loss Distribution 362
18.8 Summary 364

19 **Implied Correlation** 365
19.1 Introduction 365
19.2 Implied Correlation 365
19.3 Compound Correlation 367
19.4 Disadvantages of Compound Correlation 370
19.5 No-arbitrage Conditions 371
19.6 Summary 374

20 **Base Correlation** 375
20.1 Introduction 375
20.2 Base Correlation 375
20.3 Building the Base Correlation Curve 377
20.4 Base Correlation Interpolation 382
20.5 Interpolating Base Correlation using the ETL 389
20.6 A Base Correlation Surface 393
20.7 Risk Management of Index Tranches 394
20.8 Hedging the Base Correlation Skew 395
20.9 Base Correlation for Bespoke Tranches 398
20.10 Risk Management of Bespoke Tranches 405
20.11 Summary 406

21 **Copula Skew Models** 409
21.1 Introduction 409
21.2 The Challenge of Fitting the Skew 409
21.3 Calibration 411
21.4 Random Recovery 412
21.5 The Student-\(t\) Copula 413
21.6 The Double-\(t\) Copula 415
21.7 The Composite Basket Model 418
21.8 The Marshall–Olkin Copula 420
21.9 The Mixing Copula 421
21.10 The Random Factor Loading Model 423
21.11 The Implied Copula 427
21.12 Copula Comparison 429
Advanced Multi-name Credit Derivatives

- **22.1 Introduction**
- **22.2 Credit CPPI**
- **22.3 Constant Proportion Debt Obligations**
- **22.4 The CDO-squared**
- **22.5 Tranchelets**
- **22.6 Forward Starting Tranches**
- **22.7 Options on Tranches**
- **22.8 Leveraged Super Senior**
- **22.9 Summary**

Dynamic Bottom-up Correlation Models

- **23.1 Introduction**
- **23.2 A Survey of Dynamic Models**
- **23.3 The Intensity Gamma Model**
- **23.4 The Affine Jump Diffusion Model**
- **23.5 Summary**
- **23.6 Technical Appendix**

Dynamic Top-down Correlation Models

- **24.1 Introduction**
- **24.2 The Markov Chain Approach**
- **24.3 Markov Chain: Initial Generator**
- **24.4 Markov Chain: Stochastic Generator**
- **24.5 Summary**

Appendix A Useful Formulae

Bibliography

Index
Acknowledgements

Many thanks go to all the quants I have worked with on credit derivative modelling. First and foremost is Lutz Schloegl, a superb quant and a good friend with whom I have collaborated for many years. Other quants with whom I have collaborated and whose help I gratefully acknowledge are Ren-Raw Chen, Andrei Greenberg, Sebastian Hitier, Matthew Livesey, Sam Morgan, Claus Pedersen, Lee Phillips, Wenjun Ruan and Saurav Sen. I would especially like to acknowledge collaborations with Professor Stuart Turnbull.

On the trading side, I would like to acknowledge many fruitful conversations with Georges Assi. A large debt of gratitude is also owed to Mark Ames, Ugo Calcagnini, Assan Din and Ken Umezaki who all helped me get my head around the basics of credit derivatives way back in the late 1990s when there was nothing to read and the asset swap looked exotic.

Extra special thanks go to all those others who read earlier versions of this book, especially Lutz Schloegl whose extensive comments were a great help. I also thank Robert Campbell and Matthew Leeming who both read the entire manuscript and provided valuable feedback. Thanks also go to Matthew Livesey, Michal Oulik, Claus Pedersen and Jeroen Kerkhof for reading and commenting on selected chapters. In all of these cases, it was a significant request and they all responded generously. It must also be stated that any errors which remain in this book are mine.

I am grateful to Dev Joneja at Lehman Brothers for providing access to the LehmanLive® website, to the British Bankers’ Association and Moody’s Investor Services for permission to quote from their reports, and to the valuation experts at Markit Group Limited for answering some technical questions. Conversations with Robert McAdie are also gratefully acknowledged.

Finally I would like to reserve my biggest thanks for my wife who provided both support and encouragement. I dedicate this book to her and to my two wonderful boys.

Dominic O’Kane
April 2008.