Medical Device Epidemiology and Surveillance

Editors

S. Lori Brown, PhD, MPH
Roselie A. Bright, ScD
and
Dale R. Tavris, MD, MPH

Division of Postmarket Surveillance, Center for Devices and Radiological Health, Rockville, MD, USA
Medical Device Epidemiology and Surveillance
Medical Device Epidemiology and Surveillance

Editors

S. Lori Brown, PhD, MPH
Roselie A. Bright, ScD
and
Dale R. Tavris, MD, MPH

Division of Postmarket Surveillance, Center for Devices and Radiological Health, Rockville, MD, USA
Contents

Foreword xi
Preface xvii
Contributors xix
Acknowledgments xxv

1 Introduction 1
Thomas P. Gross

2 Medical device regulation in the USA 5
Thomas P. Gross, Celia M. Witten, and Casper Uldriks

 - Introduction 5
 - Premarket review 6
 - Marketing applications 8
 - Postmarket oversight 10
 - Conclusion 18

3 Medical device epidemiology 21
Roselie A. Bright and S. Lori Brown

 - Introduction 21
 - Features of medical devices that are relevant to epidemiology study design 26
 - Study designs for medical device epidemiology 35
 - Summary and recommendations 37

4 Surveillance of adverse medical device events 43
Roselie A. Bright

 - Introduction 43
 - Rationale for surveillance 44
 - Surveillance based on adverse event reports 47
 - Surveillance based on registries 52
 - Active surveillance 53
 - Necessary conditions for effective surveillance 54
 - Ideal AMDE surveillance program 55
 - Summary 58
5 The Medical Product Surveillance Network (MedSun) 63
Roselie A. Bright, Marilyn N. Flack, and Susan N. Gardner
Historical motivation 63
Initial considerations for the design of DeviceNet 64
MedSun basic design 69
Current status 71
Is MedSun successful in promoting the safe use of medical devices? 74
Epidemiologic considerations 75
Summary 76

6 The National Electronic Injury Surveillance System (NEISS)
and medical devices 79
Brockton J. Hefflin, Thomas P. Gross, and Thomas J. Schroeder
Description and history of NEISS 79
Potential uses and limitations of NEISS 80
Utilization of NEISS to produce national medical device-associated adverse event estimates 81
Potential for long-term utilization of NEISS for medical device surveillance 83

7 Medical device nomenclature 87
Brockton J. Hefflin, Thomas P. Gross, Elizabeth A. Richardson, and Vivian H. Coates
Technical elements 87
Current terminologies 91
Applications of nomenclature 93
Future developments 95

8 Data sources for medical device epidemiology studies
and data mining 99
Danica Marinac-Dabic, Baoguang Wang, Brockton J. Hefflin, Hesha J. Duggirala, Tripathi M. Mathew, and Cara J. Krulewitch
Introduction 99
Data sources 100
Surveillance databases 101
Registries 105
Automated large administrative databases 112
National surveys 115
Data mining 119
Future use databases for medical device epidemiology 120

9 Ethical requirements and guidelines for epidemiological studies
of medical devices 127
Danica Marinac-Dabic and Suzanne C. Fitzpatrick
Introduction 127
Bioethics foundations 128
CONTENTS

US government human subjects protection regulations 128
HHS human subjects protection regulatory requirements 130
FDA human subjects protection regulations 131
Other professional ethical guidelines 133
Ethical requirements for medical devices epidemiologic studies 136
Future ethical requirements for epidemiologic studies 142

10 An industry perspective: medical device epidemiology and surveillance 145
 Martha A. Feldman
 Introduction 145
 The product’s life cycle: premarket (preclinical and clinical) and postmarket (PM) studies 148
 Postmarket studies 153
 Summary 156

11 Perspective from an academic on postmarket surveillance 159
 Lazar J. Greenfield
 Introduction 159
 Adverse event reporting 160
 Postmarket condition of approval studies and Section 522 studies 163
 Industry use of information from adverse event reports 165
 Academic opportunities 167
 Summary 168

12 Perspective from a pharmacoepidemiologist 171
 Thomas K. Hazlet
 Introduction 171
 Review of literature 171
 Contrasts with pharmacopeidemiology 173
 Conclusions 175

13 Medical device regulation and surveillance: perspective from the EU 177
 Lennart Philipson
 Introduction 177
 Medical devices: the European directives and definitions 178
 New approach 179
 Classification of medical devices in Europe 182
 Market surveillance 183
 Traceability of medical devices in Europe 184
 The vigilance system 184

14 A consumer advocate’s perspective on medical device epidemiology and surveillance 187
 Diana M. Zuckerman
 Examples of widely publicized problems with selected medical devices 189
 Consumer concerns 193
Regulatory mechanism recommendations 197
Consumer group accomplishments: mixed results 199

15 Pediatric Medical Device Use 203
Judith U. Cope and Thomas P. Gross

Introduction 203
Medical device use in children 204
Special device risks and safety concerns for children 211
Regulatory framework 212
The future for pediatric medical device surveillance and epidemiology 214

16 Selected medical devices used to manage diabetes mellitus 219
Shewit Bezabeh, Joy H. Samuels-Reid, and Dale R. Tavris

Introduction 219
Insulin delivery devices 221
Continuous glucose monitoring devices 225
Future medical devices for the management of diabetes 228

17 Medical device-related outbreaks 237
S. Lori Brown, Hesha J. Duggirala, and Dale R. Tavris

Introduction 237
Endoscopes: bronchoscopes and gastrointestinal (GI) endoscopes 239
Hemodialysis-related outbreaks 244
Neonatal and pediatric intensive care units 247
Miscellaneous device-related outbreaks 250
Summary 251

18 Risk of transmission of prions with medical devices 259
S. Lori Brown and Azadeh Shoaibi

Iatrogenic transmission of prion disease via neurological or surgical instruments 260
Surgical instruments used to transplant tissues known to have transmitted prion disease (corneal transplant) 261
Surgical instruments in contact with lower risk peripheral tissues 262
Decontaminating surgical instruments to reduce risk of TSE transmission 263
FDA measures to minimize risk of transmission of BSE by medical products 267
Summary 268

19 Surveillance and epidemiology as tools for evaluating the materials used in medical devices 273
Roselie A. Bright

Introduction 273
General considerations that affect the design of epidemiologic studies of materials used in medical devices 273
Example: natural rubber and latex allergy 279
Summary 286
20 Exploring methods for analyzing surveillance reports on electromagnetic interference with medical devices
S. Lori Brown, Nilsa Loyo-Berríos, Michèlè G. Bonhomme, Donald M. Witters, Nancy A. Pressly, and Jeffrey L. Silberberg
Electromagnetic interference with medical devices
The MAUDE database
Adverse event reports to FDA (December 1984–October 1995):
- EMI with cardiovascular devices
- Adverse events reported to FDA (January 1994–March 2005):
 - a recent epidemiological analysis
Discussion

21 Alternative and complementary medical devices
S. Lori Brown and Joannie C. Shen
Introduction
Acupuncture needles
Ear candles
Magnets
Adverse events associated with alternative or complementary devices

22 Drug-eluting coronary stents
Hesha J. Duggirala, Thomas P. Gross, and David E. Kandzari
History and evolution of coronary stents: clinical perspective
Novel drug-eluting stent programs
Comparative trials of drug-eluting stents
Application of drug-eluting stents in complex coronary lesion subsets
Drug-eluting stents: regulatory perspective

23 The treatment of abdominal aortic aneurysms
Dale R. Tavris and Louis M. Messina
Natural history and indications for treatment
FDA experience with the postmarket assessment of an endovascular graft
Advances in stent-graft design and performance
Conclusion

24 Cardiovascular devices: aortic valves
Ronald G. Kaczmarek and Chih-Hsin K. Liu
Introduction
Operative mortality
The FDA guidance for replacement valves and the objective
- performance criteria (OPC)
Adverse event reports
The need for epidemiological studies
Conclusions

25 Hemostasis Devices
Dale R. Tavris, Beverly Gallauresi, and Ralph G. Brindis
The ideal vascular hemostasis device
Origin of FDA concern with the postmarket performance of hemostasis devices
FDA study to evaluate the risk associated with hemostasis device use 387
Possible reasons for FDA findings of apparent protective effects of hemostasis devices 389
Follow-up FDA study to assess the safety of hemostasis devices 389
Conclusion 390

26 ENT devices: cochlear implants 395
 James K. Kane and Eric A. Mann
 Cochlear implant description 395
 Epidemiological investigations involving meningitis associated with cochlear implants 396
 Conclusions 405

27 Silicone gel-filled breast implants: surveillance and epidemiology 407
 S. Lori Brown and Joan Ferlo Todd
 Breast implant types 407
 A brief regulatory history of breast implants 409
 FDA surveillance studies on breast implants 411
 Summary 421

28 Ophthalmic devices and clinical epidemiology 427
 Malvina B. Eydelman, Gene Hilmantel, James Saviola, and Don Calogero
 Introduction 427
 Epidemiological contributions to IOL evaluation 427
 Epidemiology of contact lens ulcers and public policy 430
 Conclusion 437

29 Orthopedic devices: epidemiologic considerations 441
 Ronald G. Kaczmarek, Michele G. Bonhomme, Stanley A. Brown, Judith U. Cope, and Daniel S. McGunagle
 Introduction 441
 Selected orthopedic materials 441
 Artificial hips 444
 Intervertebral disc replacement 452
 Data sources and selected methodological issues to consider in epidemiologic studies of orthopedic medical devices 456
 Summary 458

30 Clinical epidemiology of intrapartum fetal monitoring devices 463
 Danica Marinac-Dabic, Barry S. Schifrin, Cara J. Krulewitch, and Roscoe M. Moore
 Introduction 463
 Electronic fetal monitoring 464
 Scalp and umbilical cord blood gases analyses 470
 Fetal pulse oximetry 471
 Fetal ECG waveform monitoring 473
 Challenges of intrapartum fetal monitoring modalities 476
 Conclusion 478
31 The postmarket surveillance of medical devices:
meeting the challenge 483
Susan N. Gardner and Daniel Schultz

Index 487
Foreword

The problem of patient safety first leapt into the public conscience in 1999 with the publication of the Institute of Medicine’s landmark “To Err Is Human” report [1]. The report summarized a variety of studies which had been done in hospitalized patients and suggested that large numbers of patients were dying annually in the US as the result of care they were receiving, and many more patients were being injured. Two of the leading causes of injuries were surgical care and medications.

Since that time, medication safety has received a great deal of attention, and much more is known today about the epidemiology of medication-safety related issues, and how to prevent adverse drug events than in 1999. Similarly, monitoring of medication safety after drugs are released is relatively advanced. Surgical injuries are more diverse, and may be harder to address; in any event, they have received less attention.

Medical devices represent another extremely important type of medical intervention. While they are clearly beneficial in the aggregate, they also carry important risks. They represent an essential part of surgical and interventional care in particular, although they are used in all health care, and their importance is growing. The market capitalization for the device field was recently estimated to be $75 billion [2]. While this is not nearly as big as for drugs, it is still very large. Further complicating things, there appear to be approximately 8000 different companies in the medical device field and over 80% of these have fewer than 50 employees. These smaller enterprises in particular may find monitoring the safety of their devices challenging, especially as this monitoring competes for scarce resources with other parts of the company.

Monitoring of device safety is primarily the responsibility of the Food and Drug Administration, which works closely with industry to ensure public safety. Perhaps not surprisingly, many of the leading experts in the field of medical device epidemiology and surveillance work at the FDA. Thus, this authoritative book, edited by Drs Brown, Bright and Tavris from the FDA, is especially welcome. Many of the chapters are written by authors from the FDA, but there are also contributors from industry, academia, a consumer group, a consulting group, and a foreign government. The book attempts to describe the issue of device safety, and to begin to develop a theoretical framework for the study of problems with devices, much as pharmacoepidemiology did for pharmaceuticals.

Such a framework is badly needed, since many of the issues with devices are different from those with medications. For example, many devices are permanently inserted inside patients, and may have long-term consequences. Many other devices are not inserted into