PARAMETER ESTIMATION
FOR SCIENTISTS
AND ENGINEERS

Adriaan van den Bos
PARAMETER ESTIMATION
FOR SCIENTISTS
AND ENGINEERS
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
To Margaretha Flora
Pellikaan
This Page Intentionally Left Blank
CONTENTS

Preface xiii

1 Introduction 1

2 Parametric Models of Observations 7
 2.1 Introduction 7
 2.2 Purposes of model parameter estimation 8
 2.3 Traditional deterministic parameter estimation methods 9
 2.4 Statistical parametric models of observations 12
 2.4.1 The expectation model 12
 2.4.2 Advantages of statistical parametric models of observations 16
 2.5 Conclusions 20
 2.6 Comments and references 20

3 Distributions of Observations 21
 3.1 Introduction 21
 3.2 Expectation, covariance, and Fisher score 21
 3.3 The joint real normal distribution 24
 3.3.1 The joint real normal probability density function 24
 3.3.2 The Fisher score of normal observations 25

vii
CONTENTS

3.4 The Poisson distribution
3.4.1 The Poisson probability function
3.4.2 The Fisher score of Poisson observations
3.5 The multinomial distribution
3.5.1 The multinomial probability function
3.5.2 The Fisher score of multinomial observations
3.6 Exponential families of distributions
3.6.1 Definition and examples
3.6.2 Properties of exponential families of distributions
3.7 Statistical properties of Fisher scores
3.8 Complex stochastic variables
3.8.1 Scalar complex stochastic variables
3.8.2 Vectors of complex stochastic variables
3.8.3 Vectors of real and complex stochastic variables
3.9 The joint real–complex normal distribution
3.10 Comments and references
3.11 Problems

4 Precision and Accuracy

4.1 Introduction
4.2 Properties of estimators
4.3 Properties of covariance matrices
4.3.1 Real covariance matrices
4.3.2 Complex covariance matrices
4.4 Fisher information
4.4.1 Definition of the Fisher information matrix
4.4.2 The Fisher information matrix for exponential families of distributions
4.4.3 Inflow of Fisher information
4.5 Limits to precision: The Cramér–Rao lower bound
4.5.1 The Cramér–Rao lower bound for scalar functions of scalar parameters
4.5.2 The Cramér–Rao lower bound for vector functions of vector parameters
4.6 Properties of the Cramér–Rao lower bound
4.6.1 Interpretation of the expression for the Cramér–Rao lower bound
4.6.2 The Cramér–Rao lower bound as a measure of efficiency of estimation
4.6.3 Monotonicity with the number of observations
4.6.4 Propagation of standard deviation
4.6.5 Influence of estimation of additional parameters
4.6.6 The Cramér–Rao lower bound for biased estimators
4.7 The Cramér–Rao lower bound for complex parameters or functions of parameters
 4.7.1 Introduction 74
 4.7.2 The Cramér–Rao lower bound for vectors of real and complex functions of real parameters 75
 4.7.3 The Cramér–Rao lower bound for vectors of real and complex functions of real and complex parameters 76
4.8 The Cramér–Rao lower bound for exponential families of distributions 78
4.9 The Cramér–Rao lower bound and identifiability 79
4.10 The Cramér–Rao lower bound and experimental design 81
 4.10.1 Introduction 81
 4.10.2 Experimental design for nonlinear vector parameters 84
4.11 Comments and references 91
4.12 Problems 91

5 Precise and Accurate Estimation 99
5.1 Introduction 99
5.2 Maximum likelihood estimation 100
5.3 Properties of maximum likelihood estimators 105
 5.3.1 The invariance property of maximum likelihood estimators 105
 5.3.2 Connection of efficient unbiased estimators and maximum likelihood estimators 106
 5.3.3 Consistency of maximum likelihood estimators 106
 5.3.4 Asymptotic normality of maximum likelihood estimators 110
 5.3.5 Asymptotic efficiency of maximum likelihood estimators 112
5.4 Maximum likelihood for normally distributed observations 113
 5.4.1 The likelihood function for normally distributed observations 113
 5.4.2 Properties of maximum likelihood estimators for normally distributed observations 115
 5.4.3 Maximum likelihood estimation of the parameters of linear models from normally distributed observations 121
5.5 Maximum likelihood for Poisson distributed observations 123
5.6 Maximum likelihood for multinomially distributed observations 124
5.7 Maximum likelihood for exponential family distributed observations 125
5.8 Testing the expectation model: The likelihood ratio test 126
 5.8.1 Model testing for arbitrary distributions 126
 5.8.2 Model testing for exponential families of distributions 132
5.9 Least squares estimation 134
5.10 Nonlinear least squares estimation 136
5.11 Linear least squares estimation 139
5.12 Weighted linear least squares estimation 140
5.13 Properties of the linear least squares estimator 144
5.14 The best linear unbiased estimator 145
5.15 Special cases of the best linear unbiased estimator and a related result 147
 5.15.1 The Gauss–Markov theorem 147
 5.15.2 Normally distributed observations 148
 5.15.3 Exponential family distributed observations 148
5.16 Complex linear least squares estimation 149
5.17 Summary of properties of linear least squares estimators 151
5.18 Recursive linear least squares estimation 152
5.19 Recursive linear least squares estimation with forgetting 155
5.20 Comments and references 157
5.21 Problems 158

6 Numerical Methods for Parameter Estimation 163
 6.1 Introduction 163
 6.2 Numerical optimization 164
 6.2.1 Key notions in numerical optimization 164
 6.2.2 Reference log-likelihood functions and least squares criteria 166
 6.3 The steepest descent method 168
 6.3.1 Definition of the steepest descent step 168
 6.3.2 Properties of the steepest descent step 171
 6.4 The Newton method 174
 6.4.1 Definition of the Newton step 174
 6.4.2 Properties of the Newton step 175
 6.4.3 The Newton step for maximizing log-likelihood functions 182
 6.5 The Fisher scoring method 183
 6.5.1 Definition of the Fisher scoring step 183
 6.5.2 Properties of the Fisher scoring step 183
 6.5.3 Fisher scoring step for exponential families 185
 6.6 The Newton method for normal maximum likelihood and for nonlinear least squares 185
 6.6.1 The Newton step for normal maximum likelihood 185
 6.6.2 The Newton step for nonlinear least squares 187
 6.7 The Gauss–Newton method 188
 6.7.1 Definition of the Gauss–Newton step 188
 6.7.2 Properties of the Gauss–Newton step 188
 6.8 The Newton method for Poisson maximum likelihood 191
 6.9 The Newton method for multinomial maximum likelihood 192
 6.10 The Newton method for exponential family maximum likelihood 193
 6.11 The generalized Gauss–Newton method for exponential family maximum likelihood 194
 6.11.1 Definition of the generalized Gauss–Newton step 194
 6.11.2 Properties of the generalized Gauss–Newton method 195
6.12 The iteratively reweighted least squares method 197
6.13 The Levenberg–Marquardt method 197
6.13.1 Definition of the Levenberg–Marquardt step 197
6.13.2 Properties of the Levenberg–Marquardt step 199
6.14 Summary of the described numerical optimization methods 200
6.14.1 Introduction 200
6.14.2 The steepest ascent (descent) method 200
6.14.3 The Newton method 200
6.14.4 The Fisher scoring method 201
6.14.5 The Gauss–Newton method 201
6.14.6 The generalized Gauss–Newton method 202
6.14.7 The iteratively reweighted least squares method 202
6.14.8 The Levenberg–Marquardt method 202
6.14.9 Conclusions 202
6.15 Parameter estimation methodology 203
6.15.1 Introduction 203
6.15.2 Investigating the feasibility of the observations 203
6.15.3 Preliminary simulation experiments 204
6.16 Comments and references 206
6.17 Problems 206

7 Solutions or Partial Solutions to Problems 211

Appendix A: Statistical Results 247
A.1 Statistical properties of linear combinations of stochastic variables 247
A.2 The Cauchy–Schwarz inequality for expectations 249

Appendix B: Vectors and Matrices 251
B.1 Vectors 251
B.2 Matrices 252

Appendix C: Positive Semidefinite and Positive Definite Matrices 259
C.1 Real positive semidefinite and positive definite matrices 259
C.2 Complex positive semidefinite and positive definite matrices 263

Appendix D: Vector and Matrix Differentiation 265
References 269
Topic Index 271
This Page Intentionally Left Blank
The subject of this book is estimating parameters of expectation models of statistical observa-
tions. The book describes what I consider the most important aspects of the subject for applied scientists and engineers. From experience, I know that this group of users is often not aware of estimators other than least squares. Therefore, one of my purposes is to show that statistical parameter estimation has much more to offer than least squares estimation alone. To resort to least squares estimation almost automatically is, in fact, a purely expectation model oriented approach since the statistical properties of the observations are disregarded. In the approach of this book, knowledge of the distribution of the observations is involved in the choice of estimator. I hope to show that thus the available a priori knowledge may be used more fully to improve the precision of the estimator. A further advantage of the chosen approach is that it unifies the underlying theory and reduces it to a relatively small collection of coherent, generally applicable principles and notions. Moreover, this offers the opportunity to teach the subject in a systematic way.

The book is intended for a broad category of users: applied scientists, engineers, and undergraduate and graduate students. To enhance its suitability as course material and for exercise in general, I have included Problems in Chapters 3–6. Throughout, I have assumed that users have an elementary knowledge of statistics. They should be familiar with notions such as univariate and multivariate distribution, expectation, covariance, and hypothesis testing. In this respect, references such as [25, 20, 24] might be helpful.

If the book is used as course material, there are also options other than using the full text. The first is to skip all (sub)sections dealing with complex parameters or complex observations. A further option is to skip all (sub)sections concerned with exponential families of distributions. A disadvantage of the latter option is that it reduces to some extent the pursued coherence of the material taught. In view of these options, I have tried to