Microprocessor Theory
and Applications with
68000/68020 and Pentium

M. RAFIQUZZAMAN, Ph.D.
Professor
California State Polytechnic University
Pomona, California
and
President
Rafi Systems, Inc.
Microprocessor Theory
and Applications with
68000/68020 and Pentium
Microprocessor Theory
and Applications with
68000/68020 and Pentium

M. RAFIQUZZAMAN, Ph.D.
Professor
California State Polytechnic University
Pomona, California
and
President
Rafi Systems, Inc.
To my wife, Kusum; my son, Tito; and my brother, Elan
CONTENTS

<table>
<thead>
<tr>
<th>PREFACE</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREDITS</td>
<td>XV</td>
</tr>
<tr>
<td>1. INTRODUCTION TO MICROPROCESSORS</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Explanation of Terms</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Microprocessor Data Types</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Unsigned and Signed Binary Numbers</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 ASCII and EBCDIC Codes</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3 Unpacked and Packed Binary-Coded-Decimal Numbers</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4 Floating-point Numbers</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Evolution of the Microprocessor</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Typical Features of 32-bit and 64-bit Microprocessors</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Microprocessor-based System Design Concepts</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Typical Microprocessor Applications</td>
<td>19</td>
</tr>
<tr>
<td>1.6.1 A Simple Microprocessor Application</td>
<td>20</td>
</tr>
<tr>
<td>1.6.2 Examples of Typical Microprocessor Applications</td>
<td>21</td>
</tr>
<tr>
<td>2. MICROCOMPUTER ARCHITECTURE</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Basic Blocks of a Microcomputer</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Typical Microcomputer Architecture</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1 System Bus</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2 Clock Signals</td>
<td>25</td>
</tr>
<tr>
<td>2.3 Single-Chip Microprocessor</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1 Register Section</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2 Control Unit</td>
<td>30</td>
</tr>
<tr>
<td>2.3.3 Arithmetic-Logic Unit</td>
<td>32</td>
</tr>
<tr>
<td>2.3.4 Functional Representations of Simple and Typical Microprocessors</td>
<td>32</td>
</tr>
<tr>
<td>2.3.5 Simplified Explanation of Control Unit design</td>
<td>34</td>
</tr>
<tr>
<td>2.4 Program Execution by Conventional Microprocessors</td>
<td>38</td>
</tr>
<tr>
<td>2.5 Program Execution by typical 32-bit Microprocessors</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1 Pipelining</td>
<td>39</td>
</tr>
<tr>
<td>2.5.2 Branch Prediction Feature</td>
<td>44</td>
</tr>
<tr>
<td>2.6 Scalar and Superscalar Microprocessors</td>
<td>45</td>
</tr>
<tr>
<td>2.7 RISC vs. CISC</td>
<td>45</td>
</tr>
<tr>
<td>Questions and Problems</td>
<td>47</td>
</tr>
</tbody>
</table>
3. MICROPROCESSOR MEMORY ORGANIZATION

3.1 Introduction
3.2 Main memory
 3.2.1 Read-Only Memory
 3.2.2 Random-Access Memory
 3.2.3 READ and WRITE Timing Diagrams
 3.2.4 Main Memory Organization
 3.2.5 Main Memory Array Design
3.3 Microprocessor on-chip memory management unit and cache
 3.3.1 Memory Management Concepts
 3.3.2 Cache Memory Organization

Questions and Problems

4. MICROPROCESSOR INPUT/OUTPUT

4.1 Introduction
4.2 Simple I/O Devices
4.3 Programmed I/O
4.4 Unconditional and Conditional Programmed I/O
4.5 Interrupt I/O
 4.5.1 Interrupt Types
 4.5.2 Interrupt Address Vector
 4.5.3 Saving the Microprocessor Registers
 4.5.4 Interrupt Priorities
4.6 Direct Memory Access (DMA)
4.7 Summary of I/O

Questions and Problems

5. MICROPROCESSOR PROGRAMMING CONCEPTS

5.1 Microcomputer Programming Languages
5.2 Machine Language
5.3 Assembly Language
 5.3.1 Types of Assemblers
 5.3.2 Assembler Delimiters
 5.3.3 Specifying Numbers by Typical Assemblers
 5.3.4 Assembler Directives or Pseudoinstructions
 5.3.5 Assembly Language Instruction Formats
 5.3.6 Instruction Set Architecture (ISA)
 5.3.7 Typical Instruction Set
 5.3.8 Typical Addressing Modes
 5.3.9 Subroutine Calls in Assembly Language
5.4 High-Level Language
5.5 Choosing a programming language
5.6 Flowcharts

Questions and Problems

6. ASSEMBLY LANGUAGE PROGRAMMING WITH THE 68000

6.1 Introduction
6.2 68000 Registers
6.3 68000 Memory Addressing
6.4 Assembly Language Programming with the 68000
Contents

6.5 68000 Addressing Modes
6.5.1 Register Direct Addressing 117
6.5.2 Address Register Indirect Addressing 118
6.5.3 Absolute Addressing 122
6.5.4 Program Counter Relative Addressing 123
6.5.5 Immediate Data Addressing 124
6.5.6 Implied Addressing 125
6.6 68000 Instruction Set 125
6.6.1 Data Movement Instructions 128
6.6.2 Arithmetic Instructions 134
6.6.3 Logic Instructions 150
6.6.4 Shift and Rotate Instructions 152
6.6.5 Bit Manipulation Instructions 156
6.6.6 Binary-Coded-Decimal Instructions 157
6.6.7 Program Control Instructions 160
6.6.8 System Control Instructions 163
6.6.9 68000 Stack 166
6.7 68000 Delay Routine 168
Questions and Problems 170

7. 68000 HARDWARE AND INTERFACING 175
7.1 68000 Pins And Signals 175
7.1.1 Synchronous and Asynchronous Control Lines 177
7.1.2 System Control Lines 179
7.1.3 Interrupt Control Lines 181
7.1.4 DMA Control Lines 181
7.1.5 Status Lines 181
7.2 68000 Clock and Reset Signals 181
7.2.1 68000 Clock Signals 181
7.2.2 68000 Reset Circuit 182
7.3 68000 Read and Write Cycle Timing Diagrams 185
7.4 68000 Memory Interface 188
7.5 68000 I/O 192
7.5.1 68000 Programmed I/O 192
7.5.2 68000 Interrupt System 201
7.5.3 68000 DMA 206
7.6 68000 Exception Handling 207
7.7 68000/2732/6116/6821-Based Microcomputer 208
7.8 Multiprocessing with the 68000 Using the TAS Instruction and the AS Signal 212
Questions and Problems 217

8. ASSEMBLY LANGUAGE PROGRAMMING WITH THE 68020 221
8.1 Introduction 221
8.2 68020 Functional Characteristics 222
8.3 68020 Registers 225
8.4 68020 Data Types, Organization, and CPU Space Cycle 227
8.5 68020 Addressing Modes 228
8.5.1 Address Register Indirect (ARI) with Index and 8-Bit Displacement 231
8.5.2 ARI with Index (Base Displacement, bd: Value 0 or 16 Bits or 32 Bits) 232
Contents

10.6.2 Register and Immediate Modes 323
10.6.3 Memory Addressing Mode 324
10.6.4 Port Addressing Mode 330
10.6.5 Relative Addressing Mode 330
10.6.6 Implied Addressing Mode 330
10.7 Pentium Instructions 331
 10.7.1 Data Transfer Instructions 331
 10.7.2 Arithmetic Instructions 340
Questions and Problems 362

11. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PENTIUM: PART 2 367
 11.1 Logic, Bit Manipulation, Set on condition, Shift, and Rotate Instructions 367
 11.2 String Instructions 377
 11.3 Unconditional Transfer Instructions 382
 11.4 Conditional Branch Instructions 389
 11.5 Iteration Control Instructions 392
 11.6 Interrupt Instructions 393
 11.7 Processor Control Instructions 394
 11.8 Pentium Delay routine 395
Questions and Problems 397

12. PENTIUM HARDWARE AND INTERFACING 401
 12.1 Pentium Pins and Signals 401
 12.2 Pentium READ and WRITE Timing Diagrams 403
 12.3 Pentium’s interface to memory and I/O 405
 12.3.1 Memory Interface 405
 12.3.2 Pentium-EPROM Interface 411
 12.3.3 Pentium-SRAM interface 413
 12.3.4 Pentium Programmed I/O 415
 12.3.5 Pentium Interrupts and Exceptions in Real Mode 420
 12.4 Pentium-based voltmeter 423
 12.4.1 Pentium-based voltmeter using programmed I/O 424
 12.4.2 Pentium-based voltmeter using NMI 426
 12.4.3 Pentium-based voltmeter using INTR 427
 12.5 Interfacing a Pentium-based Microcomputer to a Hexadecimal Keyboard and a Seven Segment Display 430
 12.5.1 Basics of Keyboard and Display Interface to a Microcomputer 430
 12.5.2 Hexadecimal Keyboard and Seven-Segment Display Interface to a Pentium-Based Microcomputer 431
Questions and Problems 437

APPENDIX A: ANSWERS TO SELECTED PROBLEMS 443

APPENDIX B: GLOSSARY 451

APPENDIX C: MOTOROLA 68000 AND SUPPORT CHIPS 467

APPENDIX D: 68000 EXECUTION TIMES 479

APPENDIX E: 68000 / SELECTED 68020 INSTRUCTION SET 487

APPENDIX F: PENTIUM INSTRUCTION FORMAT AND TIMING 497
 F.1. INTEGER INSTRUCTION FORMAT AND TIMING 497
APPENDIX G: PENTIUM INSTRUCTION SET IN REAL MODE (SELECTED) 525

APPENDIX H: PENTIUM PINOUT AND PIN DESCRIPTIONS 547
 H.1. Pentium™ Processor Pinout 547
 H.2. Design Notes 551
 H.3. Quick Pin Reference 551
 H.4. PIN REFERENCE TABLES 558
 H.5. Pin Grouping According To Function 560
 H.6. Output Pin Grouping According To When Driven 561

BIBLIOGRAPHY 563

INDEX 565
Microprocessors play an important role in the design of digital systems. They are found in a wide range of applications, such as process control and communication systems.

This book is written to present the fundamental concepts of assembly language programming and system design concepts associated with typical microprocessors, such as the Motorola 68000/68020 and Intel Pentium. The 68000 is a 16-bit microprocessor that continues to be popular. Since the 68000 uses linear memory and contains 32-bit general-purpose registers, it is an excellent educational tool for acquiring an understanding of both hardware and software aspects of typical microprocessors.

Conventional microprocessors such as the 68000 complete fetch, decode and execute cycles of an instruction in sequence. Typical 32-bit microprocessors such as the 68020 and Pentium use pipelining, in which instruction fetch and execute cycles are overlapped. This speeds up the instruction execution time of 32-bit microprocessors. Pipelining was used for many years in mainframe and minicomputer CPUs. In addition, other mainframe features, such as memory management and floating-point and cache memory, are implemented in 32-bit microprocessors. Hence, brief coverage of these topics is provided in the first part of the book.

The book is self-contained and includes a number of basic topics. A basic digital logic background is assumed. Characteristics and principles common to typical microprocessors are emphasized and basic microcomputer interfacing techniques are demonstrated via examples using the simplest possible devices, such as switches, LEDs, A/D converters, the hexadecimal keyboard, and seven-segment displays.

The book has evolved from classroom notes developed for three microprocessor courses taught at the Electrical and Computer Engineering Department, California State Poly University, Pomona for the last several years: ECE 343 (Microprocessor I), ECE 432 (Microprocessor II), and ECE 561 (Advanced Microprocessors).

The text is divided into 12 chapters. In Chapter 1, we provide a review of terminology, number systems, evolution of microprocessors, system design concepts and typical microprocessor applications.

Chapters 2 through 12 form the nucleus of the book. Chapter 2 covers typical microcomputer architectures for both 16-bit (conventional) and 32-bit microprocessors. The concepts of pipelining, superscalar processors and RISC vs. CISC are included.