EPITHELIAL ANION TRANSPORT IN HEALTH AND DISEASE: THE ROLE OF THE SLC26 TRANSPORTERS FAMILY
EPITHELIAL ANION TRANSPORT IN HEALTH AND DISEASE: THE ROLE OF THE SLC26 TRANSPORTERS FAMILY
The Novartis Foundation is an international scientific and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust law. It was formally opened on 22 June 1949.

The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scientific research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-making foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants.

The Foundation’s headquarters at 41 Portland Place, London W1B 1BN, provide library facilities, open to graduates in science and allied disciplines. Media relations are fostered by regular press conferences and by articles prepared by the Foundation’s Science Writer in Residence. The Foundation offers accommodation and meeting facilities to visiting scientists and their societies.

Information on all Foundation activities can be found at http://www.novartisfound.org.uk
EPITHELIAL ANION TRANSPORT IN HEALTH AND DISEASE: THE ROLE OF THE SLC26 TRANSPORTERS FAMILY
Contents

Symposium on Epithelial anion transport in health and disease: the role of the SLC26 transporters family, held at the Novartis Foundation, London 1–3 March 2005

Editors: Derek J. Chadwick (Organizer) and Jamie Goode

This symposium is based on a proposal made by Shmuel Muallem

Michael J. Welsh Chair’s introduction 1

Juha Kere Overview of the SLC26 family and associated diseases 2
 Discussion 11

Marlies Knipper, Thomas Weber, Harald Winter, Claudia Braig, Jelka Cimerman, Juergen T. Fraenzer and Ulrike Zimmermann Individual characteristics of members of the SLC26 family in vertebrates and their homologues in insects 19
 Discussion 30

Daniel Markovich Sulfate transport by SLC26 transporters 42
 Discussion 51

Jonathan Ashmore and Jean-Marie Chambard Sugar transport by members of the SLC26 superfamily 59
 Discussion 68

Pia Höglund SLC26A3 and congenital chloride diarrhoea 74
 Discussion 86

Manoocher Soleimani Expression, regulation and the role of SLC26 Cl⁻/HCO₃⁻ exchangers in kidney and gastrointestinal tract 91
 Discussion 103
Seth L. Alper, Andrew K. Stewart, Marina N. Chernova, Alexander S. Zolotarev, Jeffrey S. Clark and David H. Vandorpe Anion exchangers in flux: functional differences between human and mouse SLC26A6 polypeptides 107
Discussion 119

Michael F. Romero, Min-Hwang Chang, Consuelo Plata, Kambiz Zandi-Nejad, Adriana Mercado, Vadjista Broumand, Caroline R. Sussman and David B. Mount Physiology of electrogenic SLC26 paralogues 126
Discussion 138

Peter S. Aronson Role of SLC26-mediated Cl⁻/base exchange in proximal tubule NaCl transport 148
Discussion 158

Péter Hegyi, Zoltán Rakonczay Jr., László Tiszlavica, András Varró, András Tóth, Gábor Rácz, Gábor Varga, Michael A. Gray and Barry E. Argent SLC26 transporters and the inhibitory control of pancreatic ductal bicarbonate secretion 164
Discussion 173

Nikolay Shcheynikov, Shigeru B. H. Ko, Weizhong Zeng, Joo Young Choi, Michael R. Dorwart, Philip J. Thomas and Shmuel Muallem Regulatory interaction between CFTR and the SLC26 transporters 177
Discussion 186

Antonella Forlino, Benedetta Gualeni, Fabio Pecora, Sara Della Torre, Rocco Piazza, Cecilia Tiveron, Laura Tatangelo, Andrea Superti-Furga, Giuseppe Cetta and Antonio Rossi Insights from a transgenic mouse model on the role of SLC26A2 in health and disease 193
Discussion 206

Lorraine A. Everett New insights into the role of pendrin (SLC26A4) in inner ear fluid homeostasis 213
Discussion 225

Susan M. Wall The renal physiology of pendrin (SLC26A4) and its role in hypertension 231
Discussion 239
Dominik Oliver, Thorsten Schächinger and Bernd Fakler Interaction of prestin (SLC26A5) with monovalent intracellular anions 244
Discussion 253

Final discussion 261

Index of contributors 265

Subject index 267
Participants

Seth L. Alper Molecular and Vascular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA

Barry E. Argent Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

Peter S. Aronson Section of Nephrology, Department of Medicine, Yale University School of Medicine, 1 Gilbert Street, TAC S-255, PO Box 208029, New Haven, CT 06520-8029, USA

Jonathan Ashmore Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK

Maynard Case Faculty of Life Sciences, University of Manchester, Floor 2, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, UK

Hsiao Chang Chan Epithelial Cell Biology Research Centre, Department of Physiology, The Chinese University of Hong Kong, Shatin, Hong Kong

Lorraine A. Everett Audiovestibular Genomics Group, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

Michael A. Gray Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

Pia Höglund Hospital for Children and Adolescents, PO Box 281 (Stenbäckinkatu 11), 00029 Hus, Finland

Hiroshi Ishiguro Internal Medicine and Human Nutrition, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
Juha Kere Department of Biosciences at Novum and Clinical Research Centre, Karolinska Institutet, 14157 Huddinge, Sweden

Marlies Knipper Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Neurobiology, Elfriede-Aulhorn-Strasse 5, D-72076 Tübingen, Germany

Min Goo Lee Department of Pharmacology, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul 120-752, Korea

Daniel Markovich School of Biomedical Sciences, Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia

David B. Mount Renal Division, Brigham and Women’s Hospital and VA Boston Healthcare System, Room 542, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA

Shmuel Muallem Department of Physiology, Room K4-120, UT South Western Medical Centre, 5323 Harry Hines Blvd, Dallas, TX 75390 9040, USA

Dominik Oliver Institute of Physiology, University of Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany

Paul M. Quinton Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive—0831, La Jolla, CA 92093-0831, USA

Michael F. Romero Department of Physiology & Biophysics, Room #SOM-E563, Case Western University School of Medicine, 2119 Abington Rd, Cleveland, OH 44106-4970, USA

Antonio Rossi Department of Biochemistry, University of Pavia, Via Taramelli, 3/B, I-27100 Pavia, Italy

Ursula Seidler Medizinische Hochshule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany

Manoocher Soleimani Division of Nephrology and Hypertension, University of Cincinnati Medical Center, 231 Albert Sabin Way, MSB G259, Cincinnati, OH 45267 0585, USA
Andrew K. Stewart (Novartis Foundation Bursar) RW 773, Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, East Campus, 330 Brookline Avenue, Boston, MA 02215, USA

Philip J. Thomas The University of Texas, Southwestern Medical Center at Dallas, Department of Physiology, Room K4.140A, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA

R. James Turner Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Building 10, Room 1A01, National Institutes of Health, Bethesda, MD 20892-1190, USA

Susan M. Wall Renal Division, Department of Medicine, Emory University, Mailstop: 1930/001/1AG (Medicine-Renal), Atlanta, GA 30322, USA

Michael J. Welsh (Chair) Howard Hughes Medical Institute/500 EMRB, Carver College of Medicine, University of Iowa, Iowa City, IO 52242, USA
In introducing this symposium, I am expecting that this will be an interesting meeting for three reasons. First, I have much to learn. Secondly, this is an interesting family of transporters, because there are multiple members, there is rich diversity, and there are some common themes. Thirdly, this is a small meeting which should permit some excellent discussion.

I am not an expert on the SLC26 family, so what I can say by way of introduction is quite limited. Instead, I'll highlight what I would like to learn from this meeting. First, how do these channels work? Are they electrically conductive? Or are they neutral transporters? If they are conductive, what is their relationship to ion channels? I would like to know how selectivity is determined. As I look at some of the literature, the issues of selectivity should prove very interesting. I would also like to learn something about how this family has evolved. There are multiple members and we may learn something if we look at these transporters through evolution.

The second main question I would like to address is how they contribute to normal physiology, in many different epithelia. What are the common threads and what is unique? If you transplanted one of these transporters into a different place, would it adopt new functions depending on its new home? Or are the functions all intrinsic to the protein?

Third, I hope to learn more about how loss of their function disrupts physiology. What is the pathophysiology associated with loss or mutation? If we understand this better, might it allow us to do something about disease? These are the main things I would like to learn from this meeting.

As I looked through the history of the Novartis Foundation, I came across the following quote from Lord Beveridge, made at the inauguration of the Foundation in 1949. He said, ‘This place itself is not a laboratory for mixing compounds, but we do mean to make it a laboratory for mixing scientists’. So I hope we’ll mix it up, have a good time, and learn much over the next few days.
Overview of the SLC26 family and associated diseases

Juha Kere

Department of Biosciences at Novum, Karolinska Institutet, 14157 Huddinge, Sweden and Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland

Abstract. In the late 1990s the SLC26 family of anion exchangers emerged as the second, structurally distinct gene family capable of similar transport functions as the classical SLC4 or anion exchanger (AE) gene family. The observations leading to the characterization of the SLC26 family were firmly based on research on rare human diseases and aided by comparison to Caenorhabditis elegans. SLC26A1, or rat sulphate/anion transporter 1 (Sat1), was the first gene cloned in mammals, but not characterized in humans until the year 2000. Three rare recessive diseases in humans, namely diastrophic dysplasia (cartilage disorder resulting in growth retardation), congenital chloride diarrhoea (anion exchange disorder of the intestine) and Pendred syndrome (deafness with thyroid disorder) turned out to be caused by the highly related genes SLC26A2 (first called DTDST), SLC26A3 (first called CLD or DRA) and SLC26A4 (first called PDS), respectively. Subsequently, others and our laboratory cloned prestin, a cochlear motor protein gene (SLC26A5), a putative pancreatic anion transporter (SLC26A6), and SLC26A7–SLC26A11. Some SLC26 family members show highly specific tissue expression patterns, others are widely expressed. The SLC26 exchangers are capable of transporting, with different affinities, at least the chloride, iodide, sulfate, bicarbonate, hydroxyl, oxalate and formate anions, and have distinct anion specificity profiles.

Transport of small molecules across lipid membranes is a fundamental function of all cellular organisms. Hundreds of proteins with specialized transport capabilities are expressed in different tissues of multicellular organisms, and indeed in different domains of membranes in individual cells. The transporter proteins come in families, with different members sharing structural similarities but often with distinct properties and physiological functions that may or may not be interchangeable. Distinct expression patterns in different tissues also suggest that the corresponding genes have highly specialized regulatory elements, in spite of high similarity of coding sequences. Finally, just a few changes in protein sequences may cause radical differences in the transport properties. The SLC26 family of anion exchangers provides examples of a wide spectrum of all these features, and
is largely uncharacterized. This is not surprising, considering that most members of the whole gene and protein family were described only a few years ago. Many transporter proteins were first isolated based on their functional properties, the discovery of the SLC26 gene family has been driven by human disease gene cloning and thereafter genomic approaches, based on the homology of the gene family and availability of whole genome sequences. At the beginning of this odyssey, only one gene belonging to the SLC26 gene family was known in mammals, the rat sulphate anion transporter 1 (Sat1) gene. The next three SLC26 family members were identified by positional cloning of rare recessive human disease genes (Hästbacka et al 1994, Höglund et al 1996, Everett et al 1997) even though one of them, SLC26A3, had been first cloned as a suggested tumour suppressor gene (Schweinfest et al 1993). One gene was first characterized in gerbil rather than human based on its function, motor activity in cochlear cells of the inner ear (Zheng et al 2000). Finally, all the remaining five currently known SLC26 genes were identified by a genomic homology-driven approach in human (Lohi et al 2000, 2002) and in parallel, by other approaches (Waldegger et al 2001, Toure et al 2001, Vincourt et al 2002, 2003, Mount & Romero 2004). The nomenclature of this gene family follows the convention of other solute carrier genes, starting with SLC, followed by the family number and an A separating the individual gene number. The individual members of the SLC26 family got their number identities in July 2000 (for SLC26A1 to A6) and in January 2001 (for SLC26A7 to A11, based on the full or partial human cDNA sequences AF331521 to AF331526 submitted from our laboratory) after exchange of email messages between the author of this review, Dr Elspeth Bruford of the HUGO Gene Nomenclature Committee, and nomenclature reviewers, including Dr Matthias A. Hediger. The entire human SLC26 gene family with references to the earliest GenBank sequence database entries and diseases associated with them are presented in Table 1. In the following paragraphs, I will briefly describe the discovery of the different SLC26 genes. I will only discuss the molecular cloning of each gene, even though the existence of such transporters had been demonstrated earlier by functional studies, and for considerations of space, I have omitted most of the literature related to their functions. Much additional information has already been revealed about their specific functional properties and physiological roles, and some of the first mouse knockout models are also available. More detailed reviews of these studies will be presented by other papers in this book.

SLC26A1

The rat liver canalicular sulfate transporter was the first gene of the SLC26 family to be molecularly characterized in mammals, cloned by Bissig et al (1994) and characterized by Markovich et al (1994). Curiously, the human gene remained