Biological Chemistry of Arsenic, Antimony and Bismuth

Editor
HONGZHE SUN
Department of Chemistry, University of Hong Kong, P. R. China
Biological Chemistry of Arsenic, Antimony and Bismuth
Biological Chemistry of Arsenic, Antimony and Bismuth

Editor

HONGZHE SUN

Department of Chemistry, University of Hong Kong, P. R. China
Contents

List of Contributors xiii
Preface xv

1 The Chemistry of Arsenic, Antimony and Bismuth 1
Neil Burford, Yuen-ying Carpenter, Eamonn Conrad and Cheryl D.L. Saunders

1.1 Properties of the Elements 1
1.2 Allotropes 3
1.3 Bond Energies 4
1.4 Oxidation States 4
1.5 Relativistic Effects and Orbital Contraction 5
1.6 Structure and Bonding 6
1.7 Clusters and Extended Structures 9
1.8 Hybridization and Inversion 11
1.9 Coordination Chemistry 12
1.10 Geological Occurrence 14
1.11 Aqueous Chemistry and Speciation 14
1.12 Analytical Methods and Characterization 15
1.13 Conclusions 15
References 15

2 Arsenic’s Interactions with Macromolecules and its Relationship to Carcinogenesis 19
Kirk T. Kitchin

2.1 Introduction 19
2.2 Arsenic’s Interactions with DNA and Proteins 20
 2.2.1 Release of Zinc from Zinc Finger Proteins has been Chemically Demonstrated 26
 2.2.2 Binding of Trivalent Arsenic to Zinc Finger Proteins 26
 2.2.3 Reduced Function of Zinc Finger Proteins 27
 2.2.4 Restoration of Zinc Finger Protein Function 27
2.3 Cancer – MOA 30
 2.3.1 Binding to RSH Groups 30
 2.3.2 Cancer – MOA – Oxidative Stress 31
 2.3.3 Cancer – MOA – DNA Methylation 33
2.4 Arsenic’s Many Connections to Carcinogenesis 34
 2.4.1 Human Carcinogenicity 34
 2.4.2 Animal Studies - Promotion of Carcinogenesis 38
 2.4.3 Animal Studies - Complete Carcinogenesis 38
 2.4.4 Arsenicals in the Treatment of Leukaemia - APL 40
2.5 Sources of Information on Arsenic’s Mode of Action, Biochemical Effects, Carcinogenesis in Animals and Man, Metabolism and Analytical Chemistry 40
2.6 Conclusion 46
Acknowledgements 46
Disclaimer 46
Abbreviations 47
References 48

3 Biological Chemistry of Antimony and Bismuth 53
 Nan Yang and Hongzhe Sun
 3.1 Introduction 53
 3.2 Biorelevant Coordination Chemistry of Antimony and Bismuth 53
 3.3 Antimony and Bismuth Compounds in Medicine 54
 3.3.1 Antimony in Medicine 54
 3.3.2 Bismuth in Medicine 55
 3.4 Interaction with Nucleic Acids 56
 3.4.1 Interaction of Antimony with Nucleosides and Nucleotides 56
 3.4.2 Interaction of Bismuth with Nucleosides and Nucleotides 58
 3.5 Interaction with Amino Acids and Peptides 58
 3.5.1 Interaction of Antimony with Amino Acids and Peptides 58
 3.5.2 Interaction of Bismuth with Amino Acids and Peptides 61
 3.6 Interaction with Proteins and Enzymes 62
 3.6.1 Interaction of Antimony with Proteins and Enzymes 62
 3.6.2 Interaction of Bismuth with Proteins and Enzymes 68
 3.7 Conclusion and Perspectives 77
Acknowledgements 77
References 77

4 Metallomics Research Related to Arsenic 83
 Hiroki Haraguchi
 4.1 Metallomics – Integrated Biometal Science 83
 4.2 Analytical Feasibility of ICP-AES and ICP-MS 85
 4.3 Chemical Speciation of Trace Elements in Biological Samples 87
 4.3.1 Speciation of Arsenic in Salmon Egg Cells 89
 4.3.2 Speciation of Arsenic Species in Human Urine 93
 4.3.3 Speciation of Arsenic Species in Human Blood Serum 96
 4.3.4 Arsenic Metabolism in Hamsters and Rats after an Oral Dose of Arsenite 98
4.3.5 Animal Species Difference in the Uptake of Dimethylated Arsenic by Red Blood Cells 103
4.3.6 Speciation and Excretion Patterns of Arsenic Metabolites in Human Urine after Ingestion of Edible Seaweed, Hijiki 105
4.4 Summary 109
Acknowledgements 110
References 110

5 Arsenic in Traditional Chinese Medicine 113
Kui Wang, Siwang Yu and Tianlan Zhang
5.1 Arsenic Bearing Minerals and their Clinical Applications 113
5.1.1 Introduction 113
5.1.2 Arsenolite and its Clinical Applications in Traditional Chinese Medicine (TCM) 115
5.1.3 Realgar and Orpiment and their Clinical Applications in TCM 116
5.1.4 Processing of Arsenic Bearing Minerals 117
5.2 Metabolism and Pharmacokinetics of Arsenic Bearing Minerals 119
5.2.1 Arsenolite and Arsenic Trioxide 119
5.2.2 Metabolism and Pharmacokinetics of Realgar and Orpiment 121
5.2.3 Nanoparticles of Realgar 122
5.3 Pharmacological Activities and Mechanisms of Actions of ABMs 122
5.3.1 Mechanisms of Anticancer Action of Arsenolite and ATO 122
5.3.2 Mechanisms of Anticancer Actions of Realgar 125
5.3.3 Arsenolite on Asthma Prevention 127
5.3.4 Realgar on Brain Protection 128
5.4 Perspectives 128
References 130

6 Microbial Transformations of Arsenic in Aquifers 135
Jonathan R. Lloyd
6.1 An Introduction to the Microbial Cycling of Arsenic 135
6.2 The Biochemistry of Microbial Arsenic Transformations 137
6.2.1 Microbial Resistance to As(V) via the Arsenic Operon 137
6.2.2 Gaining Energy from Arsenic: the Dissimilatory Reduction of As(V) under Anaerobic Conditions 137
6.2.3 Closing the Arsenic Cycle: the Oxidation of As(III) 138
6.3 Microbially Driven Mobilization of Arsenic in Aquifers: a Humanitarian Disaster 139
6.3.1 Microbial Ecology of Arsenic Impacted Aquifers: Hunting for the Organisms that Mobilize Arsenic 140
6.4 Conclusions and Future Directions 141
Acknowledgements 142
References 142
9 Bismuth Complexes of Porphyrins and their Potential in Medical Applications
Bernard Boitrel

9.1 Introduction 209
9.3 Bismuth Complexes of Unfunctionalized Porphyrins
 9.3.1 The First X-ray Structure of (OEP)Bi(SO$_3$CF)$_3$ 211
 9.3.2 Other X-ray Structures with Tetra-Mesoaryl
 Porphyrin: Bi(tpClpp)NO$_3$ and Bi(tpClpp)Br 211
9.4 Bismuth Complexes of Functionalized Porphyrins
 9.4.1 Picket Porphyrins 213
 9.4.2 Bis-Strapped Porphyrins 223
 9.4.3 Single-Strapped Porphyrins 236
9.5 Future Strategies Towards Bifunctional Chelates (BFC) – Conclusions 237
References 239

10 Helicobacter pylori and Bismuth
Aruni H.W. Mendis and Barry J. Marshall

10.1 Introduction 241
10.2 Helicobacter pylori
 10.2.1 Disease Associations and Clinical Manifestations 245
10.3 Bismuth as an Antimicrobial Agent
 10.3.1 Bismuth Subsalicylate (BSS) 246
 10.3.2 Colloidal Bismuth Subcitrate (CBS) 249
10.4 Mechanism of Action of Bismuth Citrate and CBS on H. pylori
 and Ulcer Healing
 10.4.1 Bismuth Toxicity 250
10.5 In Vitro Susceptibility of H. pylori and other Bacteria to Bismuth
 Compounds and Antibiotics 253
10.6 The Effect of pH on Bactericidal Activity of Bismuth Compounds 254
10.7 Novel Preparations of Bismuth Compounds 255
10.8 Novel Delivery Systems for Bismuth Compounds
 and Other Antibiotics 255
10.9 The Biochemical Targets of Bismuth
 10.9.1 Enzymes with Zn(II) and Fe(III) Sites 256
 10.9.2 Heat Shock Proteins 256
 10.9.3 Other Metabolic Enzymes 257
 10.9.4 Fumarase and Translational Factor Ef-Tu 257
 10.9.5 Phospholipases 257
 10.9.6 Pepsin 257
 10.9.7 Alcohol Dehydrogenase 258
 10.9.8 Urease 258
10.10 Binding of Bismuth Compounds to Plasma Proteins 258
References 259
11 Application of Arsenic Trioxide Therapy for Patients with Leukaemia

Bo Yuan, Yuta Yoshino, Toshikazu Kaise and Hiroo Toyoda

11.1 Introduction

11.2 Cellular and Molecular Mechanisms of ATO Actions

11.2.1 History of Arsenic as a Drug

11.2.2 Uptake of Arsenic

11.2.3 Efflux of Arsenic

11.2.4 Apoptosis Induction

11.2.5 Differentiation Induction

11.2.6 Degradation of PML-RARα

11.2.7 Proliferation Inhibition and Angiogenesis Inhibition

11.3 Pharmacokinetics of ATO in APL Patients

11.3.1 Administration Route and Distribution

11.3.2 Metabolism and Pharmacokinetics

11.3.3 Adverse Effects and Biological Monitoring

11.4 Potential Combination Therapies with ATO

11.4.1 Natural Product Derived Substances

11.4.2 Cytokine

11.4.3 Other Reagents

11.5 Potential ATO Application to Other Leukaemias

11.6 Conclusion

Acknowledgements

References

12 Anticancer Activity of Molecular Compounds of Arsenic, Antimony and Bismuth

Edward R.T. Tiekink

12.1 Introduction

12.2 Arsenic Compounds

12.3 Antimony Compounds

12.4 Bismuth Compounds

12.5 Conclusions

References

13 Radiobismuth for Therapy

Martin W. Brechbiel and Ekaterina Dadachova

13.1 Introduction

13.2 Targeting Vectors

13.3 α-Emitters versus β−-Emitters

13.4 Radionuclides

13.4.1 212Bi

13.4.2 213Bi
13 Radiolabeling – Chemistry

13.6 Preclinical Studies
- 13.6.1 212Bi
- 13.6.2 213Bi

13.7 Targeted α-Therapy versus Targeted β-Therapy

13.8 Clinical Studies
- 13.8.1 213Bi

13.9 Alternate Delivery Methods and Uses

13.10 Prospects and Conclusions

Abbreviations

Acknowledgements

References

14 Genetic Toxicology of Arsenic and Antimony

Toby G. Rossman and Catherine B. Klein

14.1 Introduction

14.2 DNA Damage in Cells Treated with Arsenicals

14.3 Mutagenesis in Cells Treated with Arsenicals

14.4 Other Genotoxic Events in Cells Treated with Arsenicals

14.5 Effects of Arsenicals on DNA Repair

14.6 Indirect Mechanisms of Mutagenicity and Comutagenicity by Arsenicals

14.7 Mutagenesis and Transformation as Secondary Effects of Genomic Instability

14.8 Antimony

References

15 Metalloproteomics of Arsenic, Antimony and Bismuth Based Drugs

Cheuk-Nam Tsang, Ruiguang Ge and Hongzhe Sun

15.1 Introduction

15.2 Chemical Speciation of Arsenic Based Drugs and their Metallometabolism
- 15.2.1 Metallometabolism in Biological Matrices
- 15.2.2 Arsenic Metabolism

15.3 Metalloproteomics and its Applications to As-, Sb- and Bi-Based Metallo Drugs
- 15.3.1 From Proteomics to Metalloproteomics
- 15.3.2 Metal Specific Selection, Detection and Prediction Methods in Metalloproteomics
- 15.3.3 Identification of Potential Targets of As-, Sb-, and Bi-Based Drugs by Metalloproteomics
List of Contributors

Bernard Boitrel UMR CNRS 6226, Sciences Chimiques de Rennes, (I.C.M.V.), Université de Rennes 1, Campus de Beaulieu 263, F-5042 RENNES Cedex, France

Martin W. Brechbiel Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, Building 10, Center Drive, Bethesda, MD 20892, USA

Neil Burford Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Yuen-ying Carpenter Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Eamonn Conrad Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Ekaterina Dadachova Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, NY 10461, USA

Hsueh-Liang Fu Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA

Ruiguang Ge The Laboratory of Integrative Biology, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China

Hiroki Haraguchi Association of International Research Initiatives for Environmental Studies, Taito-ku, Tokyo 110-0005, Japan

Richard O. Jenkins Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK

Xuan Jiang Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA

Toshikazu Kaise Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Kirk T. Kitchin Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Catherine B. Klein The Nelson Institute of Environmental Medicine, New York University Langone School of Medicine, Tuxedo, NY 10987, USA