The Periglacial Environment
Contents

<table>
<thead>
<tr>
<th>Preface to First Edition</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Second Edition</td>
<td>xv</td>
</tr>
<tr>
<td>Preface to Third Edition</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xix</td>
</tr>
</tbody>
</table>

Part I The Periglacial Domain

1 Introduction
1.1 The Periglacial Concept
1.2 Disciplinary Considerations
 1.2.1 The Growth of Geocryology
 1.2.2 The Changing Nature of Quaternary Science
 1.2.3 Modern Periglacial Geomorphology
1.3 The Growth of Periglacial Knowledge
1.4 The Periglacial Domain
1.5 The Scope of Periglacial Geomorphology
 1.5.1 Permafrost-Related Processes and Landforms
 1.5.2 Azonal Processes and Landforms
 1.5.3 Paleo-Environmental Reconstruction
 1.5.4 Applied Periglacial Geomorphology

Advanced Reading
Discussion Topics

2 Periglacial Landscapes?
2.1 Introduction
2.2 Proglacial, Paraglacial or Periglacial?
2.3 Unglaciated Periglacial Terrain
 2.3.1 Beaufort Plain, Northwest Banks Island, Arctic Canada
 2.3.2 Barn Mountains, Northern Interior Yukon Territory, Canada
2.4 Relict Periglacial Landscapes
 2.4.1 Chalk Uplands, Southern England and Northern France
 2.4.2 Pine Barrens, Southern New Jersey, Eastern USA
2.5 Conclusions

Advanced Reading
Discussion Topics

3 Periglacial Climates
3.1 Boundary Conditions
3.2 Periglacial Climates
CONTENTS

3.2.1 High Arctic Climates 34
3.2.2 Continental Climates 38
3.2.3 Qinghai-Xizang (Tibet) Plateau 38
3.2.4 Alpine Climates 39
3.2.5 Climates of Low Annual Temperature Range 39
3.2.6 Antarctica: A Special Case 40

3.3 Ground Climates 40
3.3.1 The n-Factor 41
3.3.2 The Thermal Offset 42

3.4 Periglacial Climates and the Cryosphere 44

Advanced Reading 45
Discussion Topics 46

Part II Present-Day Periglacial Environments 47

4 Cold-Climate Weathering 49
4.1 Introduction 49
4.2 Ground Freezing 49
4.2.1 The Freezing Process 50
4.2.2 Ice Segregation 52
4.2.3 The Frozen Fringe 53
4.2.4 Frost Heave 54
4.3 Freezing and Thawing 55
4.4 The Ground-Temperature Regime 57
4.4.1 The Seasonal Regime 57
4.4.2 Short-Term Fluctuations 60
4.5 Rock (Frost?) Shattering 60
4.5.1 Frost Action and Ice Segregation 61
4.5.2 Frost Weathering Models 63
4.5.3 Insolation Weathering and Thermal Shock 64
4.5.4 Discussion and Perspective 67
4.6 Chemical Weathering 68
4.6.1 General 68
4.6.2 Solution and Karstification 69
4.6.3 Salt Weathering 72
4.7 Cryogenic Weathering 75
4.8 Cryobiological Weathering 79
4.9 Cryopedology 79
4.9.1 Cryosols 80
4.9.2 Soil Micromorphology 81

Advanced Reading 82
Discussion Topics 82

5 Permafrost 83
5.1 Introduction 83
5.1.1 Definition 83
5.1.2 Moisture and Ice within Permafrost 85
5.2 Thermal and Physical Properties 85
5.2.1 The Geothermal Regime 86
5.2.2 Physical Properties 89
6 Surface Features of Permafrost

6.1 Introduction

6.2 Thermal-Contraction-Crack Polygons

6.3 Organic Terrain

6.4 Rock Glaciers

6.5 Frost Mounds
7 Ground Ice 153
 7.1 Introduction 153
 7.2 Classification 154
 7.2.1 Pore Ice 156
 7.2.2 Segregated Ice 157
 7.2.3 Intrusive Ice 158
 7.2.4 Vein Ice 159
 7.2.5 Other Types of Ice 159
 7.3 Ice Distribution 159
 7.3.1 Amounts 159
 7.3.2 Distribution with Depth 161
 7.3.3 Ice in Bedrock 162
 7.3.4 Ice in Unconsolidated Sediments 162
 7.4 Cryostratigraphy and Cryolithology 164
 7.4.1 Cryostructures, Cryotextures, and Cryofacies 165
 7.4.2 Epigenetic and Syngenetic Cryostructures 167
 7.4.3 Thaw Unconformities 171
 7.4.4 Ice Crystallography 173
 7.4.5 Ice Geochemistry 173
 7.4.6 Cryostratigraphy and Past Environments 175
 7.5 Ice Wedges 176
 7.5.1 Epigenetic Wedges 177
 7.5.2 Syngenetic Wedges 179
 7.5.3 Anti-Syngenetic Wedges 180
 7.6 Massive Ice and Massive-Icy Bodies 181
 7.6.1 Nature and Extent 181
 7.6.2 Intra-Sedimental Ice 183
 7.6.3 Buried Glacier Ice 184
 7.6.4 Other Mechanisms 184
Advanced Reading 184
Discussion Topics 185

8 Thermokarst 186
 8.1 Introduction 186
 8.2 Causes of Thermokarst 187
 8.2.1 General 187
 8.2.2 Specific 189
CONTENTS

8.3 Thaw-Related Processes 191
 8.3.1 Thermokarst Subsidence 191
 8.3.2 Thermal Erosion 191
 8.3.3 Other Processes 193

8.4 Thermokarst Sediments and Structures 193
 8.4.1 Involuted Sediments 193
 8.4.2 Retrogressive-Thaw-Slumps and Debris-Flow Deposits 194
 8.4.3 Ice-Wedge Pseudomorphs and Composite-Wedge Casts 195
 8.4.4 Ice, Silt, Sand, and Gravel Pseudomorphs 198

8.5 Ice-Wedge Thermokarst Relief 198
 8.5.1 Low-Centered Polygons 198
 8.5.2 High-Centered Polygons 200
 8.5.3 Badland Thermokarst Relief 201

8.6 Thaw Lakes and Depressions 201
 8.6.1 Morphology 203
 8.6.2 Growth and Drainage 203
 8.6.3 Oriented Thaw Lakes 205

8.7 Thermokarst-Affected Terrain 206
 8.7.1 The Lowlands of Central and Northern Siberia 207
 8.7.2 The Western North American Arctic 209

8.8 Human-Induced Thermokarst 210
 8.8.1 Causes 210
 8.8.2 Case Studies 213

Advanced Reading 215
Discussion Topics 215

9 Hillslope Processes and Slope Evolution 216

9.1 Introduction 216

9.2 Slope Morphology 216
 9.2.1 The Free-Face Model 217
 9.2.2 Rectilinear Debris-Mantled Slopes 218
 9.2.3 Convexo-Concavo Debris-Mantled Slopes 219
 9.2.4 Pediment-Like Slopes 221
 9.2.5 Stepped Profiles 223

9.3 Mass Wasting 224

9.4 Slow Mass-Wasting Processes 225
 9.4.1 Solifluction 225
 9.4.2 Frost Creep 227
 9.4.3 Gelifluction 228
 9.4.4 Solifluction Deposits and Phenomena 229

9.5 Rapid Mass Wasting 232
 9.5.1 Active-Layer-Detachment Slides 232
 9.5.2 Debris Flows, Slushflows, and Avalanches 233
 9.5.3 Rockfall 235

9.6 Slopewash 237
 9.6.1 Snow-Bank Hydrology 238
 9.6.2 Surface and Subsurface Wash 239
9.7 Frozen and Thawing Slopes 241
 9.7.1 Permafrost Creep 241
 9.7.2 Thermokarst and Thaw Consolidation 242
 9.7.3 Stability of Thawing Slopes 243
9.8 Cold-Climate Slope Evolution 244
 9.8.1 Cryoplanation 244
 9.8.2 Slope Replacement and Richter Denudation Slopes 246
 9.8.3 Rapidity of Profile Change 246
 9.8.4 Summary 247
Advanced Reading 247
Discussion Topics 247

10 Azonal Processes and Landforms 248
10.1 Introduction 248
10.2 Fluvial Processes and Landforms 248
 10.2.1 Major Rivers 249
 10.2.2 Freeze-Up and Break-Up 251
 10.2.3 Basin Hydrology 254
 10.2.4 Sediment Flow, Surface Transport, and Denudation 257
 10.2.5 Fluvio-Thermal Erosion 260
 10.2.6 Channel Morphology 260
 10.2.7 Valley Asymmetry 263
10.3 Eolian Processes and Sediments 264
 10.3.1 Wind Abrasion 265
 10.3.2 Wind Deflation 268
 10.3.3 Niveo-Eolian Sediments 268
 10.3.4 Loess-Like Silt 269
 10.3.5 Sand Dunes and Sand Sheets 270
10.4 Coastal Processes and Landforms 272
 10.4.1 The Coastal–Sea-Ice Interface 272
 10.4.2 Sea Ice, Wave Generation, and Sediment Transport 273
 10.4.3 Ice on the Beach 275
 10.4.4 The Influence of Permafrost and Ground Ice 276
 10.4.5 Cold-Climate Deltas 277
Advanced Reading 279
Discussion Topics 279

Part III Quaternary and Late-Pleistocene Periglacial Environments 281

11 Quaternary Periglacial Conditions 283
11.1 Introduction 283
11.2 The Time Scale and Climatic Fluctuations 283
11.3 Global (Eustatic) Considerations 287
 11.3.1 Sea-Level Changes 287
 11.3.2 Uplift of Qinghai-Xizang (Tibet) Plateau 290
11.4 Pleistocene Periglacial Environments of High Latitudes 291
 11.4.1 Extent of Past Glaciations 291
 11.4.2 Relict Permafrost 293
 11.4.3 Syngenetic Permafrost Growth 294
Contents

11.4.4 Loess Deposition 295
11.4.5 Mass-Wasting and “Muck” Deposits 296

11.5 Pleistocene Periglacial Environments of Mid-Latitudes 298
11.5.1 General Considerations 298
11.5.2 Mammals and Ecosystems 300
11.5.3 Perennial or Seasonal Frost? 300
11.5.4 Problems of Paleo-Environmental Reconstruction 302
11.5.5 Extent in the Northern Hemisphere 302
11.5.6 Extent in the Southern Hemisphere 306

11.6 Conclusions 306

Advanced Reading 307
Discussion Topics 307

12 Evidence for Past Permafrost
12.1 Introduction 308
12.2 Past Permafrost Aggradation 308
 12.2.1 The Paleo-Permafrost Table 308
 12.2.2 Frost-Fissure Pseudomorphs and Casts 310
 12.2.3 Frost-Mound Remnants 315
12.3 Past Permafrost Degradation 317
 12.3.1 Thermokarst Depressions 317
 12.3.2 Paleo-Thaw Layers 318
 12.3.3 Thermokarst Involutions and Sediment-Filled Pots 318
 12.3.4 Large-Scale Soft-Sediment Deformations 320
 12.3.5 Non-Diastrophic Structures in Bedrock 322
 12.3.6 Discussion 323
12.4 Summary 323

Advanced Reading 325
Discussion Topics 325

13 Periglacial Landscape Modification
13.1 Introduction 326
13.2 Intense Frost Action 327
 13.2.1 Soil Wedges 327
 13.2.2 Frost-Disturbed Bedrock 327
 13.2.3 Stratified Slope Deposits 330
 13.2.4 Head and Solifluction Deposits 331
 13.2.5 Frost-Disturbed Soils and Structures (Involutions) 332
13.3 Intense Wind Action 334
 13.3.1 Wind-Abraded Rocks 334
 13.3.2 Eolian Silt (Loess) 335
 13.3.3 Cold-Climate Eolian Sand 336
13.4 Fluvial Activity 337
 13.4.1 Major Rivers 339
 13.4.2 Asymmetrical Valleys 340
 13.4.3 Dells and Periglacial Valleys 342
13.5 Slope Modification 343
 13.5.1 Mass Wasting on Slopes 343
 13.5.2 Valley-Bottom Aggradation 343
 13.5.3 Smoothing of Slopes 346
Advanced Reading 348
Discussion Topics 348

Part IV Applied Periglacial Geomorphology 349

14 Geotechnical and Engineering Aspects 351
14.1 Introduction 351
14.2 Cold-Regions Engineering 352
 14.2.1 General Principles 352
 14.2.2 General Solutions 353
14.3 Provision of Municipal Services and Urban Infrastructure 358
14.4 Construction of Buildings and Houses 359
14.5 Water-Supply Problems 361
14.6 Roads, Bridges, Railways, and Airstrips 364
14.7 Oil and Gas Development 367
 14.7.1 Exploration Problems 367
 14.7.2 Waste-Drilling-Fluid Disposal Problems 368
 14.7.3 Pipelines and Permafrost 369
14.8 Mining Activities 371
Advanced Reading 372
Discussion Topics 372

15 Climate Change and Periglacial Environments 373
15.1 Global Change and Cold Regions 373
15.2 Climate Change and Permafrost 375
 15.2.1 Ground-Thermal Regimes 376
 15.2.2 Thickness of the Active Layer 376
 15.2.3 Extent of Permafrost 377
 15.2.4 Changes in Cryogenic Processes 378
15.3 Other Responses 381
 15.3.1 Seasonal-Snow Cover 381
 15.3.2 Sea Ice and Sea Level 382
 15.3.3 Gas Hydrates and Methane 382
 15.3.4 Seasonally-Frozen Ground 383
 15.3.5 Boreal Forest, Tundra, and Polar Desert Ecosystems 383
15.4 The Urban Infrastructure 384
15.5 Conclusions 386
Advanced Reading 386
Discussion Topics 387

References 388
Index 449
Preface to First Edition

This book is intended for use by second- and third-year level geography students in universities or colleges of higher education in the United Kingdom. It is also suitable as a text for an undergraduate course on periglacial geomorphology at the honors level in Canada and the United States. On a more general level, the book may prove useful to high school teachers and other individuals interested or specializing in the physical geography of cold regions. I have assumed, however, that the reader will already possess some understanding of the physical environment, such as might be provided by a first-year physical geography or elementary geomorphology course.

In writing this book I had two aims in mind. The first was to give a realistic appraisal of the nature of the geomorphic processes and landforms in high-latitude periglacial environments. The second was to provide some guide to the recognition and interpretation of periglacial features in the now temperate regions of North America and Europe. The regional emphasis is oriented towards areas of which I have personal field experience, notably the western Canadian Arctic, central Siberia, southern England, and central Poland. Thus, the overall focus is more towards lowland, rather than alpine, periglacial conditions. Notwithstanding this comment, I have attempted to give a balanced world picture; important literature pertaining to other areas has been incorporated.

The reasons for writing this book are also twofold. First, the majority of students will never have the opportunity to experience, at first hand, high-latitude periglacial environments. However, since cold conditions prevailed over large areas of middle latitudes at several times during the last one million years, the appreciation of such conditions is essential for a balanced interpretation of these landscapes. Second, the vast northern regions of North America and Siberia are assuming an ever-increasing importance in man’s quest for natural resources. Their development will be possible only if we understand the terrain and climatic conditions of these regions. For both these reasons, I hope this book will serve a useful purpose.

I have divided the book into three parts. Part 1 is a general introduction to periglacial conditions in which the extent of the periglacial domain and the variety of periglacial climates are briefly considered. Part 2 presents a systematic treatment of the various geomorphic processes operating in present-day periglacial environments. Wherever possible, I have attempted to show the relationship between process and form and to stress the multivariate nature of many landforms. The sequence of chapters is important since they are planned to be read successively. Part 3 serves only as an introduction to Pleistocene periglacial phenomena. Emphasis in this part is upon forms rather than processes and their interpretation in the light of our understanding of similar phenomena in present-day periglacial environments.

I have not attempted to be comprehensive in my treatment of the literature. By selecting information, I have attempted to give a viewpoint. Inevitably, this viewpoint is biased to