Susceptibility
Weighted Imaging in MRI
Susceptibility Weighted Imaging in MRI

Basic Concepts and Clinical Applications

Edited by

E. Mark Haacke
Wayne State University, Detroit, MI, USA
The MRI Institute for Biomedical Research, Detroit, MI, USA
Case Western Reserve University, Cleveland, OH, USA
Loma Linda University, Loma Linda, CA, USA
McMaster University, Hamilton, ON, Canada

Jürgen R. Reichenbach
Jena University Hospital, Jena, Germany
Friedrich Schiller University, Jena, Germany

WILEY-BLACKWELL
A JOHN WILEY & SONS, INC., PUBLICATION
Contents

PREFACE ix
CONTRIBUTORS xiii

PART I BASIC CONCEPTS 1

1 Introduction to Susceptibility Weighted Imaging 3
 Jürgen R. Reichenbach and E. Mark Haacke

2 Magnetic Susceptibility 17
 Jaladhar Neelavalli and Yu-Chung Norman Cheng

3 Gradient Echo Imaging 33
 Jürgen R. Reichenbach and E. Mark Haacke

4 Phase and Its Relationship to Imaging Parameters and Susceptibility 47
 Alexander Rauscher, E. Mark Haacke, Jaladhar Neelavalli, and Jürgen R. Reichenbach

5 Understanding T_2^*-Related Signal Loss 73
 Jan Sedlácík, Alexander Rauscher, Jürgen R. Reichenbach, and E. Mark Haacke

6 Processing Concepts and SWI Filtered Phase Images 89
 Alexander Rauscher and Stephan Witoszynskyj

7 MR Angiography and Venography of the Brain 103
 Samuel Barnes, Zhaoyang Jin, Yiping P. Du, Andreas Deistung, and Jürgen R. Reichenbach
CONTENTS

8 Brain Anatomy with Phase
 Jeff Duyn and Oliver Speck

PART II CURRENT EFFORTS IN CLINICAL TRANSLATIONAL
RESEARCH USING SWI

9 SWI Venographic Anatomy of the Cerebrum
 Daniel K. Kido, Jessica Tan, Steven Munson, Udochukwu E. Oyoyo,
 and J. Paul Jacobson

10 Novel Approaches to Imaging Brain Tumors
 Sandeep Mittal, Bejoy Thomas, Zhen Wu, and E. Mark Haacke

11 Traumatic Brain Injury
 Karen Tong, Barbara Holshouser, and Zhen Wu

12 Imaging Cerebral Microbleeds with SWI
 Muhammad Ayaz, Alexander Boikov, Grant McAuley, Mathew Schrag,
 Daniel K. Kido, E. Mark Haacke and Wolff Kirsch

13 Imaging Ischemic Stroke and Hemorrhage with SWI
 Nathaniel Wycliffe, Guangbin Wang, Masahiro Ida, and Zhen Wu

14 Visualizing Deep Medullary Veins with SWI
 in Newborn and Young Infants
 J. Paul Jacobson, Udochukwu E. Oyoyo, Daniel K. Kido,
 John Wuchenich, and Stephen Ashwal

15 Susceptibility Weighted Imaging in Multiple Sclerosis
 Yulin Ge, Robert I. Grossman, and E. Mark Haacke

16 Cerebral Venous Diseases and Occult Intracranial
 Vascular Malformations
 Hans-Joachim Mentzel, Guangbin Wang, Masahiro Ida,
 and Jürgen R. Reichenbach

17 Sturge–Weber Syndrome
 Zhifeng Kou, Csaba Juhasz and Jiani Hu

18 Visualizing the Vessel Wall Using Susceptibility
 Weighted Imaging
 Yang Qi, Samuel Barnes and E. Mark Haacke

19 Imaging Breast Calcification Using SWI
 Michael D. Noseworthy, Colm Boylan, and Ali Fatemi-Ardekani

20 Susceptibility Weighted Imaging at Ultrahigh Magnetic Fields
 Andreas Deistung, Samuel Barnes, Yulin Ge, and Jürgen R. Reichenbach
PART III ADVANCED CONCEPTS

21 Improved Contrast in MR Imaging of the Midbrain Using SWI
Elena Manova and E. Mark Haacke
353

22 Measuring Iron Content with Phase
Manju Liu, Charbel Habib, Yanwei Miao, and E. Mark Haacke
369

23 Validation of Phase Iron Detection with Synchrotron
X-Ray Fluorescence
Helen Nichol, Karla Hopp, Bogdan F. Gh. Popescu, and E. Mark Haacke
403

24 Rapid Calculation of Magnetic Field Perturbations from Biological
Tissue in Magnetic Resonance Imaging
Jaladhar Neelavalli, Yu-Chung Norman Cheng, and E. Mark Haacke
419

25 SWIM: Susceptibility Mapping as a Means to Visualize
Veins and Quantify Oxygen Saturation
Jin Tang, Jaladhar Neelavalli, Saifeng Liu, Yu-Chung Norman Cheng,
and E. Mark Haacke
461

26 Effects of Contrast Agents in Susceptibility Weighted Imaging
Andreas Deistung and Jürgen R. Reichenbach
487

27 Oxygen Saturation: Quantification
E. Mark Haacke, Karthik Prabhakaran, Ilaya Raja Elango, Zhen Wu,
and Jaladhar Neelavalli
517

28 Quantification of Oxygen Saturation of Single Cerebral Veins,
the Blood Capillary Network, and Its Dependency on Perfusion
Jan Sedlacik, Song Lai, and Jürgen R. Reichenbach
529

29 Integrating Perfusion Weighted Imaging, MR Angiography,
and Susceptibility Weighted Imaging
Meng Li and E. Mark Haacke
543

30 Functional Susceptibility Weighted Magnetic Resonance Imaging
Markus Barth and Daniel B. Rowe
561

31 Complex Thresholding Methods for Eliminating Voxels That
Contain Predominantly Noise in Magnetic Resonance Images
Daniel B. Rowe, Jing Jiang, and E. Mark Haacke
577

32 Automatic Vein Segmentation and Lesion Detection:
from SWI-MIPs to MR Venograms
Samuel Barnes, Markus Barth and Peter Koopmans
605

33 Rapid Acquisition Methods
Song Lai, Yingbiao Xu and E. Mark Haacke
619

34 High-Resolution Venographic BOLD MRI of Animal
Brain at 9.4 T: Implications for BOLD fMRI
Seong-Gi Kim and Sung-Hong Park
637
CONTENTS

35 Susceptibility Weighted Imaging in Rodents 649
 Yimin Shen, Zhifeng Kou, and E. Mark Haacke

36 Ultrashort TE Imaging: Phase and Frequency Mapping of Susceptibility Effects in Short T_2 Tissues of the Musculoskeletal System 669
 Jiang Du, Michael Carl, and Graeme M. Bydder

APPENDIX: Seminal Articles Related to the Development of Susceptibility Weighted Imaging 697

INDEX 717
Since its inception, magnetic resonance imaging has used tissue properties such as T_1, T_2, and spin density followed by flow, diffusion characteristics, lipid imaging, and spectroscopy as the technology developed to create images with extraordinary detail of the body and brain; and this list continues to grow. Surprisingly, prior to susceptibility weighted imaging or SWI, the basic property of tissue susceptibility had not been used directly, but rather taken advantage of through local T_2^* effects in magnitude images. The problem with this approach is that many different sources can cause T_2^* signal dephasing. The basic field effects created by susceptibility have generally been recognized as a source of artifacts and the usual first response was to remove them. However, such field effects can be used to separate types of materials such as calcium deposits, which are diamagnetic, from microbleeds, which are paramagnetic. In fact, these field effects were used in the original concept of susceptibility weighted imaging to better image small veins and to enhance contrast in tissues.

Practically, the phase information available in MR imaging carries all the information that is needed to reconstruct the local magnetic source or susceptibility difference between tissues. Although SWI uses phase as a source of contrast, the more advanced concept is to create a susceptibility map that can be used not only to differentiate paramagnetic from diamagnetic substances but also to quantify the amount of a given substance present that is causing the susceptibility difference, such as local iron differences between tissues. In this book, we refer to the combination of SWI filtered phase and magnetic susceptibility mapping as SWIM for susceptibility weighted imaging and mapping. The work on SWI showed the significance of phase in enhancing contrast in tissues and now SWIM opens the door to quantifying susceptibility in tissues. Clinically, SWI makes it possible to image microbleeds and veins more effectively, while SWIM will provide the methods to quantify oxygen saturation and local iron content. These techniques have or will find applications in neurovascular diseases, neurodegenerative diseases, and iron-related diseases. Multi-echo SWI also offers a means to image the
entire vascular system, including arteries and veins alike. The field is still developing, and there are hints that major roadblocks in this area are falling, thanks to technical advances in magnet homogeneity, gradient strengths, and faster imaging methods such as parallel imaging. For example, the need to accommodate or correct air/tissue interfaces is now theoretically possible, high bandwidth imaging avoids geometric distortion, and multi-echo imaging may offer a means to ideally phase unwrap data on a pixel by pixel basis. This book contains nearly every aspect of SWI; however, a number of new developments and new findings are being made at the time this book went into publication. As these new concepts in the field of MRI evolve and develop, some of them may be ready for incorporation into the next edition of the book.

The main aim of this book is to provide clinicians a detailed overview of the basic concepts and applications related to susceptibility weighted imaging. The book has been organized into three parts. In the first eight chapters, we introduce basic concepts that include the definitions and mechanisms of gradient echo imaging, phase, T_2^*, and multi-echo imaging. This will enable the reader to have an understanding of the basics of the terms used throughout the book. The next 12 chapters represent the current efforts in clinical translational research using SWI. These chapters cover the basic venous structures in the brain followed by the application of SWI in several diseases, such as cancer, traumatic brain injury, vascular dementia, stroke, hemorrhage, multiple sclerosis, venous malformations, Sturge–Weber syndrome, atherosclerosis, and calcifications in breast cancer. The final 16 chapters cover a variety of technically more advanced concepts, including susceptibility mapping (SWIM), oxygen saturation measurements, technical developments, and animal imaging, as well as a list of references related to SWI up to early 2010. Most of the images used in this book have been adapted from published journal articles. Since most of these were either from Journal of Magnetic Resonance Imaging (JMRI) or Magnetic Resonance in Medicine (MRM), both published by John Wiley & Sons Inc., a blanket permission was acquired for their use in this book. Acknowledgement for the figures adapted from other publications are specifically mentioned in their respective captions.

The increasing clinical applications of SWI were our inspirations to write and produce this book. We believe its recent growth into SWIM and susceptibility mapping will spearhead even more quantitative measures of iron and new applications ranging from neurodegenerative diseases to hemochromatosis. Many colleagues around the world have made efforts in developing clinical applications of SWI and many, if not most of them, have contributed to this book. We acknowledge the contributions of these experts in the field. Without their enthusiasm and continuous support, including numerous meetings at various conferences, this project would not have been possible.

We are indebted to all those people who helped us in bringing out this book, particularly Alexander Boikov, Daniel Haacke, Lisa Hamm, and Judith Farah. Yongquan Ye helped us with his technical expertise in refining several chapters. A very special thanks to Jaladhar Neelavalli for his careful reading of the book, for his meticulous attention to detail, and for coordinating the final efforts that made it possible to get this book to press, in a timely fashion. We acknowledge Wiley for taking on this project and for their expert professional editorial support, particularly that of Dean Gonzalez, Kristen Parrish, and Ms. Sanchari Sil. We are grateful to Thom Moore, editor at Wiley, for his patience and enthusiasm in bringing out this book. A special thanks is due to the people at Siemens Healthcare for having made SWI available as a product for their customers. This was a major
step in taking the methodology into the clinical domain and, in part, is the reason why so many new applications are developing for SWI now. Finally, we would like to thank our families who put up with the added responsibilities during our long hours of work. Their emotional support and patience made this book possible.

E. Mark Haacke

Jürgen R. Reichenbach
Contributors

STEPHEN ASHWAL, Department of Pediatrics, School of Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA

MUHAMMAD AYAZ, Massachusetts General Hospital, Stroke Research Center, Boston, MA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, University of Texas Southwestern Medical Center, Dallas, TX, USA

SAMUEL BARNES, Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA

MARKUS BARTH, Centre for Cognitive Neuroimaging, Donders Institute of Brain, Cognition and Behaviour, Radbound University, Nijmegen, The Netherlands

ALEXANDER BOIKOV, Wayne State University, Detroit, MI, USA

COLM BOYLAN, Imaging Research Centre, Brain-Body Institute, St. Joseph’s Healthcare, Diagnostic Imaging, St. Joseph’s Healthcare, Department of Radiology, McMaster University, Hamilton, Ontario, Canada

GRAEME M. BYDDER, Department of Radiology, University of California, San Diego, CA, USA

YU-CHUNG NORMAN CHENG, MR Center/Concourse, Harper Hospital, Wayne State University, Detroit, MI, USA

ANDREAS DEISTUNG, Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany

JIANG DU, Department of Radiology, University of California, San Diego, CA, USA

YIPING P. DU, Department of Psychiatry and Radiology, University of Colorado Denver, Aurora, CO, USA