Christoph Elschenbroich
Organometallics
Related Titles

Kraatz, H.-B., Metzler-Nolte, N. (Eds.)
Concepts and Models in Bioinorganic Chemistry

Schubert, U., Hüsing, N.
Synthesis of Inorganic Materials
2nd Edition
2005, ISBN 3-527-31037-1

Friebolin, H.
Basic One- and Two-Dimensional NMR Spectroscopy
4th Edition
2005, ISBN 3-527-31233-1

Nicolaou, K. C., Snyder, S. A.
Classics in Total Synthesis II
More Targets, Strategies, Methods
2003, ISBN 3-527-30684-6

Bruce, D. W., O’Hare, D. (Eds.)
Inorganic Materials

Nicolaou, K. C., Sorensen, E. J.
Classics in Total Synthesis
Targets, Strategies, Methods
1995, ISBN 3-527-29231-4
Organometallics

Translated by
José Oliveira
and
Christoph Elschenbroich

Third, Completely Revised and Extended Edition
From the disordered liquid or gaseous phase a methane molecule approaches a coordinatively unsaturated highly reactive metal atom and is about to form an M...CH₄ σ complex. Oxidative addition to yield a hydrido–metal–methyl unit eventually follows. The low-valent metal atom may either be stabilized by coordination to an allyl or pentadienyl ligand (the red ribbon) or may be part of a metal surface (the maroon/blue band pattern). If the northwestern C–H bond is replaced by a C–C bond that is connected to the ligand, the intermolecular C–H activation described in the scenario above becomes instead intramolecular C–H activation as encountered in agostic interactions.
Preface to the Third Edition

Whereas the Second Edition of this book followed only three years after the first, the Third Edition had to wait 14 years to go into print. In a field as flourishing as that of organometallic chemistry this time span borders to infinity. Since the former coauthor Albrecht Salzer reconsidered his priorities, Organometallics, 3rd Ed. has become a single author book, a fact that did not speed up the process of preparing it. If the Third Edition does not look completely alien to the reader this must be traced to the invaluable contributions Albrecht made to previous editions and which have kept their place in the most recent version.

Another obvious change is the considerably increased volume of the Third Edition, which appears simultaneously with the Fifth Edition of the German version. This growth reflects the impressive advances made in the field to which, among others, Nobel prizes awarded to six leading organometallic chemists during the last decade attest. Spectacular new achievements include synthetic masterpieces of fundamental importance, particularly in main-group organoelement chemistry, increased attention to the f-block elements as bonding partners to carbon, and the elaborate use of organotransition-metal complexes in homogeneous catalysis, serving laboratory-scale preparations as well as industrial processes. Bioorganometallic chemistry has emerged recently as a fascinating new discipline; the complexity of this topic often likens it to searching for a needle in a haystack. These highly disparate endeavors are now aided by access to sophisticated, yet routine, methods of structural analysis in solution and in the solid state as well as by the rapidly expanding use of computational quantum chemistry. Attempts to convey to the reader a little bit of all of this without a significant page increase would have been doomed to failure. Admittedly, the often cited excuse put forward by Blaise Pascal more than three centuries ago also applies in the present case: “I have made this a rather long letter because I haven’t had time to make it shorter.”

Organometallics 3rd Edition is thought to contain sufficient material for a one-year course meeting twice a week. Compared to previous editions only Chapter 16, which deals with metal-metal bonds and metal-atom clusters, has remained virtually unchanged as no principally new perspectives have turned up and a systematic approach to cluster synthesis does not appear to be in sight.

The selection of citations in the running text is based more on utility considerations than on historical fidelity. Often a full paper or a review article is more useful.
for the reader than the earlier short communication that protects priority interests. For “milestones” of pivotal importance, however, the appropriate primary references are generally given. In view of the vast amount of published work, the choice of articles for further reading collected in Appendix A-4 to some extent reflects “careful arbitrariness”. Notwithstanding, the literature accessible through the author index should be fairly representative of modern organometallic chemistry.

I am grateful to numerous colleagues who offered valuable hints. Taking the risk of incompleteness I would like to name A. Ashe III, A. Berndt, M. Bickelhaupt, G. Boche, M. Brookhart, K.H. Dötz, J. Ellis, R.D. Ernst, H. Fischer, G. Frenking, A. Hafner, J. Heck, G. Herberich, R.W. Hoffmann, P. Jutzi, W. v. Philipsborn, K. Pörschke, Ch. Reichardt, P. Roesky, H. Schwarz, W. Siebert, J. Sundermeyer, R. Thauer, W. Uhl, M. Weidenbruch, H. Werner, and N. Wiberg. To ex-coauthor Albrecht Salzer I am indebted for the splendid cooperation in the past. New formulae and schemes were drawn with insight and proficiency by Andrea Nagel; the author and subject indexes were converted for the English Edition by José Oliveira. More importantly, it is a pleasure to acknowledge the linguistic contributions of José Oliveira, who translated the new sections from the German Fifth Edition and who commented on those parts which I had translated myself. Cooperation with Project Editor Bettina Bems was both efficient and pleasant. Production Manager Hans-Jochen Schmitt must be commended for creating an attractive layout and for tolerating several last-minute corrections.

Last but not least I thank those colleagues and students who pointed out errors in previous editions and made suggestions for improvements. Hopefully, this practice will continue in future.

Marburg, December 2005

Christoph Elschenbroich
Preface to the First Edition

The present volume is the translation of the Second Edition (1988) of our text “Organometallchemie – Eine kurze Einführung”; corrections and a few results of very recent origin were included but otherwise the body was left unchanged.

Can a 500 page treatise on a branch of chemistry still be called “concise”? On the other hand, a section of only 20 pages covering transition-metal olefin complexes certainly must be regarded as short. This contrast illustrates the dilemma encountered if one sets out to portray the whole of organometallic chemistry in a single volume of tolerable size. The book developed from an introductory course (one semester, about 30 lectures) on organometallic chemistry for students confronted with the field for the first time. The material covered is a mixture of indispensible basic facts and selected results of most recent vintage. Attempts to systematize organometallic chemistry by relating molecular structures to the number and nature of the valence electrons are presented as are applications of organometallics in organic synthesis and in industrial processes based on homogeneous catalysis.

An apparent omission is the absence of a chapter specifically dealing with organometallic reaction mechanisms. It is our contention, however, that mechanistic organometallic chemistry has not yet reached the stage which would warrant a short overview from which useful generalizations could be drawn by the beginner. Note, for example, that even reactions as fundamental as metal carbonyl substitution are currently under active investigation, the intermediacy of 17 or 19 valence electron species opening up new possible pathways. Interspersed within the text, however, the reader finds several comments and mechanistic proposals ranging from well established kinetic studies to catalysis loops which at times have more the character of mnemotechnic devices than of kinetic schemes based on experimental evidence. Detailed mechanistic considerations should be deferred to the second act of the study of organometallic chemistry and several textbooks, mainly concentrating on organo-transition metal compounds, offer a wealth of material with which to pursue this goal.

We have structured the text in the traditional way – following the periodic table for main-group element organometallics and according to the nature of the ligand for transition-metal complexes – which we find most suitable for an introduction. Apart from the Chapters 16 and 17 (Metal-metal bonds, clusters, catalysis) somewhat more specialized material is presented in sections called “Excursions”. Rigor-
ous scientific referencing would be inappropriate in a text of the present scope. At the end, a literature survey (300 odd entries) is given which leads the reader to important review articles and key papers, including several classics in the field. Furthermore, in the running text authors' names are linked to the facts described whereby the form (Author, year) designates the year of the discovery, usually in a short communication, and the form (Author, year R) the appearance of the respective full paper or review. The complete citation can then be easily retrieved via consultation of Chemical Abstracts. A desired side-effect is to familiarize the student with author's names and their fields of endeavor. The many coworkers, who actually did the work, may forgive us that only the name of the respective boss is given.

Among our own coworkers who helped to bring this English Edition to completion, the native speakers Pamela Alean (Great Britain, now a resident of Zürich, Switzerland) and James Hurley (USA; resident of Marburg, Germany) stand out. They went a long way to eliminate our worst excesses of “Gerglish”. The bulk of the structural formulae was drawn by one of the authors (A.S.) thereby keeping things in the right perspective and making the book easy to use. Monika Scheld, Marburg, helped with the preparation of the indexes and by checking the cross references. We are grateful to the editor Dr. Michael Weller and the production manager Bernd Riedel (both of VCH Publishers) for a pleasant form of cooperation and their toleration of several last-minute changes. Finally, the authors mutually acknowledge their unflagging support during the various stages of the enterprise.

Ch. Elschenbroich
Marburg
Germany

March
1989

A. Salzer
Zürich
Switzerland
Contents

Preface to the Third Edition V
Preface to the First Edition VII

Introduction

1 Milestones in Organometallic Chemistry 3

2 Organoelement Compounds: Classification and Electronegativity Considerations 11

3 Energy, Polarity, and Reactivity of the M–C Bond 15
 3.1 Stability of Main-Group Organometallic Compounds 15
 3.2 Lability of Main-Group Organometallic Compounds 17
 Excursion 1: Where does our knowledge of M–C bond energies come from? 19

Main-Group Organometallics

4 Overview of Preparation Methods 27

5 Organometallic Chemistry of Alkali Metals (Group 1) 33
 5.1 Organolithium Compounds 33
 Excursion 2: 6Li and 7Li NMR Spectroscopy of Organolithium Compounds 39
 5.2 Organometallic Compounds of the Heavier Alkali Metals 50
 Excursion 3: EPR Spectroscopy of Organoalkali-Metal Compounds 55

6 Organometallic Compounds of Groups 2 and 12 59
 6.1 Organometallic Compounds of the Alkaline-Earth Metals (Group 2) 59
 6.1.1 Organoberyllium Compounds 59
 6.1.2 Organomagnesium Compounds 62
 6.1.3 Organocalcium, -strontium, and -barium Compounds 70
6. Organometallic Compounds of Zn, Cd, Hg (Group 12)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>Organozinc Compounds</td>
<td>73</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Organocadmium Compounds</td>
<td>77</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Organomercury Compounds</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Excursion 4: Organomercury Compounds in vivo</td>
<td>82</td>
</tr>
</tbody>
</table>

7. Organometallic Compounds of the Boron Group (Group 13)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Organoboron Compounds</td>
<td>87</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Organoboranes</td>
<td>87</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Organoboron–Transition-Metal Compounds</td>
<td>93</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Boron Heterocycles</td>
<td>94</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Polyhedral Boranes, Carbaboranes, and Heterocarbaboranes</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Excursion 5: 11B NMR Spectroscopy of Organoboron Compounds</td>
<td>108</td>
</tr>
<tr>
<td>7.2</td>
<td>Organoaluminum Compounds</td>
<td>110</td>
</tr>
<tr>
<td>7.2.1</td>
<td>OrganoaluminumIII Compounds</td>
<td>111</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Subvalent Organoaluminum Compounds</td>
<td>123</td>
</tr>
<tr>
<td>7.3</td>
<td>Gallium, Indium, and Thallium Organyl Compounds</td>
<td>126</td>
</tr>
<tr>
<td>7.3.1</td>
<td>GaIII, InIII, and TlIII Organyl Compounds and their Lewis Base Adducts</td>
<td>126</td>
</tr>
<tr>
<td>7.3.2</td>
<td>GaII,IV, InII,IV, and TlII,IV Organyl Compounds</td>
<td>129</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Thallium in Organic Synthesis</td>
<td>136</td>
</tr>
</tbody>
</table>

8. Organoelement Compounds of the Carbon Group (Group 14)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Organosilicon Compounds</td>
<td>142</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Silicon Organyl Compounds of Coordination Number 4</td>
<td>142</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Organosilicon Compounds with Coordination Numbers 3, 2, and 1 and Their Subsequent Products</td>
<td>153</td>
</tr>
<tr>
<td>8.2</td>
<td>Organogermanium Compounds</td>
<td>171</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Germanium Organyl Compounds of Coordination Number 4</td>
<td>171</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Organogermanium Compounds with Coordination Numbers 3, 2, and 1 and Their Subsequent Products</td>
<td>175</td>
</tr>
<tr>
<td>8.3</td>
<td>Organotin Compounds</td>
<td>179</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Excursion 6: 119Sn Mössbauer and 119Sn NMR Spectroscopy</td>
<td>179</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Organotin Compounds with Coordination Numbers 6, 5, and 4 and Their Subsequent Products</td>
<td>182</td>
</tr>
<tr>
<td>8.4</td>
<td>Organolead Compounds</td>
<td>198</td>
</tr>
<tr>
<td>8.4.1</td>
<td>PbIV Organyl Compounds</td>
<td>199</td>
</tr>
<tr>
<td>8.4.2</td>
<td>PbIII, PbII, and PbI Organyl Compounds</td>
<td>203</td>
</tr>
</tbody>
</table>

9. Organoelement Compounds of the Nitrogen Group (Group 15)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>EV Organyl Compounds (E = As, Sb, Bi)</td>
<td>212</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Pentaoorganoelement Compounds R$_3$E</td>
<td>212</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Organoelement Derivatives RnEX${5-n}$</td>
<td>215</td>
</tr>
<tr>
<td>9.2</td>
<td>EIII Organyl Compounds (E = As, Sb, Bi)</td>
<td>217</td>
</tr>
</tbody>
</table>
9.2.1 Trisorganoelement Compounds R_3E 218
9.2.2 Organoelement Derivatives R_nEX_{3-n} 221
9.3 Chains and Rings Containing E–E Single Bonds 224
9.4 E (P, As, Sb, Bi) as Partners in Multiple Bonds 229
 9.4.1 E=C(p_n–p_n) Bonds 229
 9.4.2 E≡C(p_n–p_n) Bonds 232
 9.4.3 E=E(p_n–p_n) Bonds 235
 9.4.3 E≡E((p_n–p_n)) Bonds 237

10 Organoelement Compounds of Selenium and Tellurium
 (Group 16) 239

11 Organometallic Compounds of Copper, Silver, and Gold
 (Group 11) 249
 11.1 Copper and Silver Organyls 249
 11.2 Gold Organyls 262

Organometallic Compounds of the Transition Metals

12 Introduction 275
 12.1 The 18 Valence Electron (18 VE) Rule 276
 Excursion 7: Can the VSEPR concept be applied to transition-metal
 complexes? 282
 12.2 Organometallic Catalysis: Some Fundamental Principles 284

13 σ-Donor Ligands 291
 13.1 Preparation of Transition-Metal–Alkyl and –Aryl Compounds 292
 13.2 Selected Properties of Transition-Metal σ-Organyls 295
 13.2.1 Thermodynamic Stability versus Kinetic Lability 295
 13.2.2 Interactions of C–H σ Bonds with Transition Metals 299
 13.2.3 Interaction of C–C σ Bonds with Transition Metals 308
 13.2.4 Transition-Metal Perfluorocarbon σ Complexes 312
 13.3 Transition-Metal Organyls In Vivo 315

14 σ-Donor/\(\pi\)-Acceptor Ligands 329
 14.1 Transition-Metal–Alkenyl, –Aryl, and –Alkynyl Complexes 329
 14.2 Transition-Metal Carbene Complexes 333
 14.3 Transition-Metal–Carbyne Complexes 350
 14.4 Metal Carbonyls 356
 14.4.1 Preparation, Structure, and Properties 357
 14.4.2 Variants of CO Bridging 360
 14.4.3 Bonding Properties and Experimental Evidence 363
 14.4.4 Principal Reaction Types 372
 14.4.5 Carbonyl Metalates and Carbonyl Metal Hydrides 375
 14.4.6 Carbonyl Metal Halides 378
14.5 Thio-, Seleno-, and Tellurocarbonyl Metal Complexes 379
14.6 Isocyanide Complexes (Metal Isonitriles) 381
Excursion 8: Photochemistry of Organometallic Compounds 383

15 \(\sigma, \pi \)-Donor/\(\pi \)-Acceptor Ligands 395
15.1 Olefin Complexes 395
15.1.1 Homoalkene Complexes 395
15.1.2 Heteroalkene Complexes 413
15.1.3 Homo- and Heteroallene Complexes 415
15.2 Alkyne Complexes 424
15.2.1 Homoalkyne Complexes 425
15.2.2 Heteroalkyne Complexes 435
15.3 Allyl and Enyl Complexes 436
15.3.1 Allyl Complexes 436
15.3.2 Dienyl and Trienyl Complexes 445
Excursion 9: NMR Spectroscopy of Organometallic Compounds 451
15.4 Complexes of the Cyclic \(\pi \)-Perimeters \(C_nH_n \) 478
15.4.1 \(C_3R_3^+ \) as a Ligand 479
15.4.2 \(C_4H_4 \) as a Ligand 480
15.4.3 \(C_5H_5^- \) as a Ligand 484
15.4.3.1 Binary Cyclopentadienyl–Metal Complexes 486
15.4.3.2 Cyclopentadienyl Metal Carbonyls 507
15.4.3.3 Cyclopentadienyl Metal Nitrosyls 511
15.4.3.4 Cyclopentadienyl Metal Hydrides 512
15.4.3.5 Cyclopentadienyl Metal Halides and Their Products 514
15.4.3.6 Special Applications of Metallocene Derivatives 518
15.4.4 \(C_6H_6 \) as a Ligand 528
15.4.4.1 Bis(arene)metal Complexes 528
15.4.4.2 Arene Metal Carbonyls 539
15.4.4.3 Other Complexes of the Type \((\eta^6\text{-Arene})ML_n \) 543
15.4.4.4 Benzene Cyclopentadienyl Complexes 544
Excursion 10: Organometallic Chemistry of Fullerenes 546
15.4.5 \(C_7H_7 \) as a Ligand 549
15.4.6 \(C_8H_8 \) as a Ligand 555
15.5 Metal–\(\pi \)-Complexes of Heterocycles 560
15.5.1 S, Se, and Te Heterocycles 561
15.5.2 N Heterocycles 561
15.5.3 P and As Heterocycles 564
15.5.4 B Heterocycles 570
15.5.5 Metallaheterocycles 576

16 Metal–Metal Bonds and Transition-Metal-Atom Clusters 579
16.1 Formation of and Criteria for Metal–Metal Bonds 579
16.2 Dinuclear Clusters 584
16.3 Trinuclear Clusters 587
16.4 Tetranuclear Clusters 588
Excursion 11: Structure and Bonding in Clusters – The Isolobal Analogy 590
16.5 Approaches to Systematic Cluster Synthesis 595
16.6 Pentanuclear and Higher Clusters 599

17 Organometallic Chemistry of the Lanthanoids and Actinoids 609
17.1 Comparative Considerations 610
17.2 Tour of the Ligands 614

18 Organometallic Catalysis in Synthesis and Production 635
18.1 Olefin Isomerization 635
18.2 C–C Coupling Reactions 637
18.2.1 Allylic Alkylation 638
Excursion 12: Asymmetric Allylic Alkylation 640
18.2.2 The Heck Reaction 642
18.2.3 The Suzuki Reaction 645
18.2.4 The Stille Reaction 649
18.2.5 The Sonogashira Reaction 651
18.2.6 Hydrocyanation 652
18.3 C–Heteroatom Coupling 654
18.3.1 Amination of Arenes 654
18.3.2 Hydroamination 657
18.3.3 Hydroboration 658
18.3.4 Hydrosilation 659
18.4 Olefin Oxidation 660
18.5 Water-Gas-Shift and Fischer–Tropsch Reactions 665
18.6 Carbonylation of Alcohols 669
18.7 Hydrogenation of Alkenes 670
18.8 Hydroformylation 676
18.9 Reppe Syntheses 679
18.10 Alkene and Alkyne Metathesis 682
18.10.1 Alkene Metathesis 682
18.10.2 Alkyne Metathesis 688
18.10.3 Alkene–Alkyne Metathesis 689
18.11 Oligomerization and Polymerization of Alkenes and Alkynes 691
18.11.1 Oligomerizations 692
18.11.2 Olefin Polymerization 695
18.11.2.1 Polyethylene 697
18.11.2.2 Polypropylene 699
18.11.2.3 Homo- and Copolymerization; Functionalized Olefins, Cycloolefins, and Diolefins 706
18.11.2.4 Non-Group 4 Catalysts 709
18.11.2.4.1 Lanthanoidocene Catalysts 709
18.11.2.4.2 The Iron Age of Olefin Polymerization 710