Aryl Diazonium Salts

New Coupling Agents in Polymer and Surface Science
Edited by
Mohamed Mehdi Chehimi

Aryl Diazonium Salts
Related Titles

Pinna, N., Knez, M. (eds.)
Atomic Layer Deposition of Nanostructured Materials
2011
ISBN: 978-3-527-32797-3

Mittal, V. (ed.)
Surface Modification of Nanotube Fillers
2011
ISBN: 978-3-527-32878-9

del Campo, A., Arzt, E. (eds.)
Generating Micro- and Nanopatterns on Polymeric Materials
2011
ISBN: 978-3-527-32508-5

Xanthos, M. (ed.)
Functional Fillers for Plastics
2010
ISBN: 978-3-527-32361-6

Scott, P. (ed.)
Linker Strategies in Solid-Phase Organic Synthesis

Basset, J.-M., Psaro, R., Roberto, D., Ugo, R. (eds.)
Modern Surface Organometallic Chemistry
2009
ISBN: 978-3-527-31972-5

Förch, R., Schönherr, H., Jenkins, A. T. A. (eds.)
Surface Design: Applications in Bioscience and Nanotechnology
2009
ISBN: 978-3-527-40789-7

Bhattacharya, A., Rawlins, J. W., Ray, P. (eds.)
Polymer Grafting and Crosslinking

Patai, S.
Patai Chemistry of Diazonium and Diazo Groups, Part 1 and 2
Online Book Wiley Interscience
ISBN: 978-0-470-77155-6 (Part 2)

Electrochemical Surface Modification
Thin Films, Functionalization and Characterization
Series: Advances in Electrochemical Sciences and Engineering (Volume 10)
Series edited by Alkire, R. C., Kolb, D. M., Lipkowski, J., and Ross, P.
2008
ISBN: 978-3-527-31409-0
Aryl Diazonium Salts

New Coupling Agents in Polymer and Surface Science
To Jean Pinson, with gratitude
Contents

Preface
XV
List of Contributors
XVII

1
Attachment of Organic Layers to Materials Surfaces by Reduction of Diazonium Salts
Jean Pinson

1.1 A Brief Survey of the Chemistry and Electrochemistry of Diazonium Salts
1.2 The Different Methods that Permit Grafting of Diazonium Salts
1.2.1 Electrochemistry
1.2.2 Reducing Substrate, Homolytic Dediazonation, Reaction with the Substrate
1.2.3 Reducing Reagent
1.2.4 Neutral and Basic Media
1.2.5 Ultrasonication
1.2.6 Heating and Microwave
1.2.7 Mechanical Grafting
1.2.8 Photochemistry
1.3 The Different Substrates, Diazonium Salts, and Solvents that Can Be Used
1.3.1 Substrates
1.3.2 Diazonium Salts
1.3.3 Solvents
1.4 Evidence for the Presence of a Bond between the Substrate and the Organic Layer
1.4.1 Stability of the Layer
1.4.2 Spectroscopic Evidence for a Bond
1.5 From Monolayers to Multilayers
1.5.1 Monolayers
1.5.2 Layers of Medium Thickness
1.5.2.1 Thick Layers
1.6 Structure and Formation of Multilayers

1.6.1 Chemical Structure 21
1.6.2 The Spatial Structure of the Layers 22
1.6.3 Compactness of the Layers 23
1.6.4 Swelling of the Layer 24
1.6.5 Electron Transfer through the Layers 24
1.6.6 The Formation Mechanism of Multilayers 25
1.7 Conclusion 27
References 27

2 Aryl–Surface Bonding: A Density Functional Theory (DFT) Simulation Approach 37
Nan Shao, Sheng Dai, and De-en Jiang
2.1 Introduction 37
2.2 Density Functional Theory 38
2.3 Bonding between Aryl and Various Substrates 38
2.3.1 On Graphite/Graphene 39
2.3.1.1 On the Basal Plane 39
2.3.1.2 On the Edges of Graphene 42
2.3.2 On Carbon Nanotubes 44
2.3.3 On Metal Surfaces 45
2.4 Summary and Outlook 48
Acknowledgments 49
References 50

3 Patterned Molecular Layers on Surfaces 53
Alison J. Downard, Andrew J. Gross, and Bradley M. Simons
3.1 Methods Based on Scanning Probe Lithography 53
3.1.1 AFM 54
3.1.2 SECM 54
3.1.3 Spotting 56
3.2 Methods Based on Soft Lithography 57
3.2.1 Printing 57
3.2.2 Molds 59
3.2.3 Nanosphere Lithography 59
3.3 Methods Based on Lithography 60
3.4 Methods Based on Surface-Directed Patterning 62
3.4.1 Modification of Si Surfaces 63
3.4.2 Modified Electrode Arrays 64
3.5 Summary and Conclusions 66
References 68

4 Analytical Methods for the Characterization of Aryl Layers 71
Karsten Hinrichs, Katy Roodenko, Jörg Rappich,
Mohamed M. Chehimi, and Jean Pinson
4.1 Introduction 71
4.2 Scanning Probe Microscopies 71
4.3 UV–VIS Spectroscopy: Transmission, Reflection, and Ellipsometry 72
4.4 IR Spectroscopy 72
4.4.1 Transmission Spectroscopy 73
4.4.2 Reflection Spectroscopy 74
4.4.3 Infrared Spectroscopic Ellipsometry (IRSE) 75
4.4.4 IRSE Surface Characterization 77
4.4.5 In Situ IR Spectroscopy: ATR and IRSE 79
4.5 Raman Spectroscopy and Surface-Enhanced Raman Scattering (SERS) 83
4.6 X-ray Photoelectron Spectroscopy (XPS) 84
4.7 X-ray Standing Waves (XSW) 91
4.8 Rutherford Backscattering 93
4.9 Time of Flight Secondary Ion Mass Spectroscopy 93
4.10 Electrochemistry 94
4.11 Contact Angle Measurements 96
4.12 Conclusion 96
References 98

5 Modification of Nano-objects by Aryl Diazonium Salts 103
Dao-Jun Guo and Fakhradin Mirkhalaf
5.1 Introduction 103
5.2 Electrochemical Modification of Nano-objects by Reduction of Diazonium Salts 105
5.2.1 Surface Modification of Carbon Nano-objects via Electrochemical Reduction of Aryl Diazonium Cations 105
5.2.2 Surface Modification of Metal and Metal Oxide Nano-objects via Electrochemical Reduction of Aryl Diazonium Cations 111
5.3 Chemical Modification of Nano-objects by Reduction of Diazonium Salts 112
5.3.1 Surface Modification of Carbon Nano-objects via Chemical Reduction of Aryl Diazonium Cations 112
5.3.2 Surface Modification of Metal and Metal Oxide Nano-objects via Chemical Reduction of Aryl Diazonium Cations 116
5.4 Summary and Conclusions 119
Acknowledgments 120
References 120

6 Polymer Grafting to Aryl Diazonium-Modified Materials: Methods and Applications 125
Sarra Gam-Derouich, Samia Mahouche-Chergui, Hatem Ben Romdhane, and Mohamed M. Chehimi
6.1 Introduction 125
6.2 Methods for Grafting Coupling Agents from Aryl Diazonium Compounds 127
6.3 Grafting Macromolecules to Surfaces through Aryl Layers 130
 6.3.1 Binding Macromolecules to Surfaces by a Grafting from Strategy 130
 6.3.1.1 Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) 130
 6.3.1.2 Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (SI-RAFT) 142
 6.3.1.3 Surface-Initiated Photopolymerization 143
 6.3.1.4 Alternative Methods 146
 6.3.2 Attachment of Macromolecules through Grafting onto Strategies 147
 6.3.2.1 Photochemical Attachment 147
 6.3.2.2 Ring Opening 148
 6.3.2.3 Acylation 149
 6.3.2.4 Click Chemistry 149
 6.3.2.5 Diazotation of Substrates and Macromolecules 150
 6.4 Adhesion of Polymers to Surfaces through Aryl Layers 151
 6.5 Conclusion 153

References 153

7 Grafting Polymer Films onto Material Surfaces: The One-Step Redox Processes 159
 Guy Deniau, Serge Palacin, Alice Mesnage, and Lorraine Tessier
 7.1 Cathodic Electrografting (CE) in an Organic Medium 160
 7.1.1 Direct Cathodic Electrografting of Vinylic Polymers 160
 7.1.2 Indirect Cathodic Electrografting 162
 7.2 Surface Electroinitiated Emulsion Polymerization (SEEP) 164
 7.2.1 Characterization of Poly(Butyl Methacrylate) Films 166
 7.2.2 Determination of the Film Structure 167
 7.2.3 Reduction of Protons and the Role of Hydrogen Radicals 169
 7.2.4 Mechanism of SEEP 170
 7.3 Chemical Grafting via Chemical Redox Activation (Graftfast™) 171
 7.3.1 Process without Vinylic Monomer 172
 7.3.2 Process with Vinylic Monomer 174
 7.3.2.1 Type of Materials 174
 7.3.2.2 Parameters Controlled in the Process 174
 7.4 Summary and Conclusions 177

References 178

8 Electrografting of Conductive Oligomers and Polymers 181
 Jean Christophe Lacroix, Jalal Ghilane, Luis Santos, Gaelle Trippe-Allard,
 Pascal Martin, and Hyacinthe Randriamahazaka
 8.1 Introduction 181
 8.2 Conjugated Oligomers and Polymers 181
8.3 Surface Grafting Based on Electroreduction of Diazonium Salts 184
8.4 Polyphenylene and Oligophenylene-Tethered Surface Prepared by the Diazonium Reduction of Aniline or 4-Substituted Aniline 187
8.5 n-Doping and Conductance Switching of Grafted Biphenyl, Terphenyl, Nitro-biphenyl and 4-Nitroazobenzene Mono- and Multilayers 187
8.6 p-Doping and Conductance Switching of Grafted Oligo-Phenylthiophene or Oligothiophene Mono- and Multilayers 190
8.7 p-Doping and Conductance Switching of Grafted Oligoaniline Mono- and Multilayers 192
8.8 Conclusion and Outlook 193

References 195

9 The Use of Aryl Diazonium Salts in the Fabrication of Biosensors and Chemical Sensors 197
J. Justin Gooding, Guozhen Liu, and Alicia L. Gui
9.1 Introduction 197
9.1.1 Sensors and Interfacial Design 197
9.1.2 Molecular Level Control over the Fabrication of Sensing Interfaces 198
9.2 The Important Features of Aryl Diazonium Salts with Regard to Sensing 200
9.3 Sensors and Biosensors Fabricated Using Aryl Diazonium Salts 201
9.3.1 Chemical Sensors – Sensors Fabricated via the Immobilization of Chemical Recognition Species 201
9.3.2 Biosensors 205
9.3.2.1 Enzyme Biosensors 206
9.3.2.2 Immunobiosensors 208
9.3.2.3 DNA-Based Biosensors 210
9.3.2.4 Cell-Based Biosensors 213
9.4 Conclusions 213
References 214

10 Diazonium Compounds in Molecular Electronics 219
Richard McCreery and Adam Johan Bergren
10.1 Introduction 219
10.2 Fabrication of Molecular Junctions Using Diazonium Reagents 222
10.2.1 Substrates for Diazonium-Derived Molecular Junctions 222
10.2.2 Surface Modification Using Diazonium Chemistry 223
10.2.3 Application of Top Contacts 225
10.3 Electronic Performance of Diazonium-Derived Molecular Junctions 226
10.3.1 Surface Diffusion Mediated Deposition (SDMD) 227
10.3.2 Structural Control of Molecular Junction Behavior 230
Contents

10.3.3 Redox Reactions in Molecular Junctions 232
10.3.4 Microfabricated Molecular Devices Made with Diazonium Chemistry 233
10.4 Summary and Outlook 235
Acknowledgments 236
References 236

11 Electronic Properties of Si Surfaces Modified by Aryl Diazonium Compounds 241
Jörg Rappich, Xin Zhang, and Karsten Hinrichs
11.1 Introduction 241
11.2 Experimental Techniques to Characterize Electronic Properties of Si Surfaces in Solutions 242
11.2.1 In Situ Photoluminescence and Photo Voltage Measurements 242
11.2.2 In Situ PL and PV Measurements during Electrochemical Grafting 244
11.2.3 Reaction Scheme of the Electrochemical Grafting via Diazonium Ions 245
11.2.4 Change in \(I_{\text{PL}} \) and \(U_{\text{PV}} \) during Electrochemical Grafting onto Si Surfaces 246
11.2.5 Change in Band Bending and Work Function after Electrochemical Grafting onto Si Surfaces 248
11.2.6 pH Dependence and Enhanced Surface Passivation 249
11.3 Conclusion and Outlook 251
Acknowledgments 252
References 252

12 Non-Diazonium Organic and Organometallic Coupling Agents for Surface Modification 255
Fetah I. Podvorica
12.1 Amines 255
12.1.1 Characterization of the Grafted Layer 257
12.1.1.1 Electrochemical Methods 257
12.1.1.2 Surface Analysis Techniques 258
12.1.2 Chemical Grafting 259
12.1.3 Localized Electrografting 260
12.1.4 Grafting Mechanism 261
12.1.5 Applications 262
12.2 Arylhydrazines 264
12.3 Aryltriazenes 266
12.4 Alcohols 267
12.4.1 Observation and Characterization of the Film 268
12.4.2 Applications 269
12.5 Grignard Reagents 270
12.5.1 Characterization of the Layers 271
12.5.2 Grafting Mechanism 272
12.6 Onium Salts 272
12.6.1 Iodonium Salts 272
12.6.2 Sulfonium Salts 273
12.6.3 Ammonium Salts 273
12.7 Alkyl Halides 274
12.8 Conclusion 275
References 276

13 Various Electrochemical Strategies for Grafting Electronic Functional Molecules to Silicon 283
Dinesh K. Aswal, Shankar Prasad Koiry, and Shiv Kumar Gupta

13.1 Introduction 283
13.2 Architecture of Hybrid Devices 284
13.2.1 Molecular Dielectrics and Wires 285
13.2.2 Molecular Diodes 286
13.2.3 Resonant Tunnel Diodes 286
13.2.4 Molecular Transistors 286
13.3 Electrografting of Monolayers to Si 287
13.3.1 Essential Requirements 287
13.3.2 Experimental Process of Electrografting 287
13.4 Negative Differential Resistance Effect in a Monolayer Electrografted Using a Diazonium Complex 288
13.4.1 Electrografting of DHTT 288
13.4.2 NDR Effect in DHTT Monolayers 290
13.5 Dielectric Monolayers Electrografted Using Silanes 293
13.5.1 Mechanism of Electrografting 293
13.5.2 Electrical Characterization 294
13.6 Molecular Diodes Based on C_{60}/Porphyrin-Derivative Bilayers 295
13.6.1 Fabrication Process 296
13.6.1.1 Electrografting of Acceptor C_{60} Layer on Si 296
13.6.1.2 Self-Assembly of Donor Porphyrin Derivative Layer on C_{60}/Si 297
13.6.2 Rectification Characteristics of D–A Bilayers 298
13.7 Memory Effect in TPP-C11 Monolayers Electrografted Using a C=C Linker 301
13.7.1 Electrografting of TPP-C11 Monolayer 301
13.7.2 Electrical Bistability and Memory Effect 303
13.8 Summary 305
References 305

14 Patents and Industrial Applications of Aryl Diazonium Salts and Other Coupling Agents 309
James A. Belmont, Christophe Bureau, Mohamed M. Chehimi, Sarra Gam-Derouich, and Jean Pinson

14.1 Introduction 309
14.2 Patents 309
14.2.1 The Surface Chemistry of Diazonium Salts 309