Chitosan is a linear polysaccharide commercially produced by the deacetylation of chitin. It is non-toxic, biodegradable, biocompatible, and acts as a bioadhesive with otherwise unstable biomolecules – making it a valuable component in the formulation of biopharmaceutical drugs. Chitosan-Based Systems for Biopharmaceuticals provides a concise and up-to-date overview of the application of chitosan and its derivatives in the development and optimization of biopharmaceutical medicinal products. An international team of experts and researchers from academia, industry and regulatory bodies review the technology over four parts:

- Part I discusses general aspects of chitosan and its derivatives, with particular emphasis on issues related to the development of biopharmaceutical chitosan-based systems.
- Part II deals with the use of chitosan and derivatives in the formulation and delivery of biopharmaceuticals, and focuses on the synergistic effects between chitosan and this particular subset of pharmaceuticals.
- Part III discusses specific applications of chitosan and its derivatives for biopharmaceutical use.
- Part IV presents diverse viewpoints on different issues such as regulatory, manufacturing and toxicological requirements of chitosan and its derivatives related to the development of biopharmaceutical products, as well as their patent status, and clinical application and potential.

Chitosan-Based Systems for Biopharmaceuticals is an important compendium of fundamental concepts, practical tools and applications of chitosan-based biopharmaceuticals for researchers in academia and industry working in drug formulation and delivery, biopharmaceuticals, medicinal chemistry, pharmacy, bioengineering and new materials development.
Chitosan-Based Systems for Biopharmaceuticals
Chitosan-Based Systems for Biopharmaceuticals

Delivery, Targeting and Polymer Therapeutics

Edited by

BRUNO SARMENTO
Department of Pharmaceutical Technology, Faculty of Pharmacy,
University of Porto, Porto, Portugal
and
CICS, Department of Pharmaceutical Sciences, Instituto Superior
de Ciências da Saúde–Norte, Gandra, Portugal

JOSÉ DAS NEVES
Department of Pharmaceutical Technology, Faculty of Pharmacy,
University of Porto, Porto, Portugal
Contents

List of Contributors xvii
Foreword xxiii
Maria José Alonso
Preface xxv
Acknowledgments xxvii

Part One General Aspects of Chitosan 1

1 Chemical and Technological Advances in Chitins and Chitosans Useful for the Formulation of Biopharmaceuticals 3
Riccardo A. A. Muzzarelli

1.1 Introduction 3
1.2 Safety of Chitins and Chitosans 4
1.3 Ionic Liquids: New Solvents and Reaction Media 5
1.4 Chitin and Chitosan Nanofibrils 8
1.4.1 Mechanically Isolated Nanofibrils in the Presence of Acetic Acid 8
1.4.2 Nanochitosan Obtained from Partially Deacetylated Chitin or Deacetylated Nanochitin 9
1.5 Electrospun Nanofibers 10
1.6 Polyelectrolyte Complexes and Mucoadhesion 12
1.6.1 Chitosan Polyelectrolyte Complexes Soluble in Alkaline Medium 14
1.6.2 Polyelectrolyte Complexes of Regioselectively Oxidized Chitin 15
1.6.3 Polyelectrolyte Complexes of Chitosan with Bacterial Cell Wall Components 15
1.7 Conclusions and Future Perspectives 16
Acknowledgments 16
References 16

2 Physical Properties of Chitosan and Derivatives in Sol and Gel States 23
Marguerite Rinaudo

2.1 Introduction 23
2.2 Chitin 24
2.2.1 Solid State of Chitin 24
2.2.2 Solubility of Chitin 24
2.2.3 Characterization of Chitin 26
2.2.4 Processing of Chitin Solution and Physical Properties of Materials 28
2.3 Chitosan 28
2.3.1 Solubility of Chitosan 28
2.3.2 Characterization of Chitosan 29
Contents

2.3.3 Processing of Chitosan-Based Materials 31
2.3.4 Complex Materials Based on Interacting Chitosan and Chitosan Derivatives 31
2.4 Conclusions and Future Perspectives 36
References 36

3 Absorption Promotion Properties of Chitosan and Derivatives 45

Akira Yamamoto

3.1 Introduction 45
3.2 Effect of Chitosan on the Intestinal Absorption of Poorly Absorbable Drugs 47
3.3 Effect of Chitosan Derivatives on the Intestinal Absorption of Poorly Absorbable Drugs 47
3.4 Effect of Chitosan Oligomers on the Intestinal Absorption of Poorly Absorbable Drugs 48
3.5 Colon-Specific Delivery of Insulin Using Chitosan Capsules 51
3.6 Conclusions and Future Perspectives 54
References 54

4 Biocompatibility and Biodegradation of Chitosan and Derivatives 57

Ahmad Sukari Halim, Lim Chin Keong, Ismail Zainol, and Ahmad Hazri Abdul Rashid

4.1 Introduction 57
4.2 Biocompatibility Evaluation of Chitosan and Derivatives 58
 4.2.1 *In Vitro* Biocompatibility 60
 4.2.2 *In Vivo* Biocompatibility 63
 4.2.3 Effect of Sterilization on Biocompatibility 64
4.3 Biodegradation of Chitosan and Derivatives 65
 4.3.1 Factors Influencing the Biodegradation of Chitosan and Derivatives 67
 4.3.2 *In Vitro* Biodegradation of Chitosan and Derivatives 68
 4.3.3 *In Vivo* Biodegradation of Chitosan and Derivatives 69
4.4 Conclusions and Future Perspectives 69
References 70

5 Biological and Pharmacological Activity of Chitosan and Derivatives 75

Teresa Cunha, Branca Teixeira, Bárbara Santos, Marlene Almeida, Gustavo Dias, and José das Neves

5.1 Introduction 75
5.2 Biological Activity 76
 5.2.1 Antimicrobial Activity 76
 5.2.2 Immune Effects and Anti-Inflammatory Activity 77
 5.2.3 Antioxidant Activity 78
 5.2.4 Anticancer Activity 79
 5.2.5 Blood Coagulation Effects 79
 5.2.6 Antidiabetic Activity 80
 5.2.7 Neuroprotective Activity 80
 5.2.8 Other Biological Activities 81
5.3 Chitosan’s Usefulness in Therapy and Alternative Medicine 82
 5.3.1 Wound Healing 82
 5.3.2 Obesity 82
5.3.3 Dyslipidemia 83
5.3.4 Dental Plaque 83
5.3.5 Renal Failure 83
5.3.6 Other Uses 84
5.4 Conclusions and Future Perspectives 84
Acknowledgments 85
References 85
Further Reading 92

6 Biological, Chemical, and Physical Compatibility of Chitosan and Biopharmaceuticals 93
Masayuki Ishihara, Masanori Fujita, Satoko Kishimoto, Hidemi Hattori, and Yasuhiro Kanatani
6.1 Introduction 93
6.2 Structural Features of Chitosan and Its Derivatives 94
6.3 Biocompatibility for Chitosan and Its Derivatives 95
 6.3.1 Inflammatory Reaction 95
 6.3.2 Foreign Body Reaction 96
 6.3.3 Biocompatibility Testing 97
6.4 Biocompatibility of Photo-Cross-Linkable Chitosan Hydrogel 98
 6.4.1 Photo-Cross-Linkable Chitosan Hydrogel 98
 6.4.2 Photo-Cross-Linkable Chitosan Hydrogel as a Biological Adhesive 99
 6.4.3 Photo-Cross-Linkable Chitosan Hydrogel as a Wound Dressing 99
 6.4.4 Safety of Photo-Cross-Linkable Chitosan Hydrogel 99
6.5 Physical and Chemical Compatibility of Chitosan and Its Derivatives 100
 6.5.1 Chitosan-Based Peptide and Protein Delivery Systems 101
 6.5.2 Chitosan-Based Gene Delivery Systems 101
 6.5.3 Physicochemical Characterization of Protein-, Peptide-, or Gene-Loaded Chitosan-Based PECs 101
6.6 Conclusions and Future Perspectives 102
References 103

7 Approaches for Functional Modification or Cross-Linking of Chitosan 107
A. Anitha, N. Sanoj Rejinold, Joel D. Bumgardner, Shanti V. Nair, and Rangasamy Jayakumar
7.1 Introduction 107
7.2 General Awareness of Chitosan Cross-Linking Methods 108
 7.2.1 Chemical Cross-Linking 108
 7.2.2 Radiation Cross-Linking 111
 7.2.3 Physical Cross-Linking 111
7.3 Modified Chitosan: Synthesis and Characterization 112
 7.3.1 Synthesis of Water-soluble Chitosan Derivatives 112
 7.3.2 Thiolation 113
 7.3.3 Succinylation 113
 7.3.4 Chitosan-Grafted Polymers 115
7.4 Applications of Modified Chitosan and Its Derivatives in Drug Delivery 118
7.5 Conclusions and Future Perspectives 118
Acknowledgments 118
References 119
10.3 Overview

10.3.1 Overview 161
10.3.2 Thiolated Chitosan 161
10.3.3 Chitosan–EDTA and Chitosan–DTPA 164
10.3.4 Trimethyl Chitosan 167
10.3.5 Mono-\(N\)-Carboxymethyl Chitosan 168
10.3.6 \(N\)-Sulfonato-\(N,O\)-Carboxymethylchitosan 168
10.3.7 Hydrophobically Modified Chitosans 169
10.3.8 PEGylated Chitosan 170
10.3.9 Chitosan–Succinate and Chitosan–Phthalate 170

10.4 Biopharmaceutical Use of Chitosan and Its Derivatives

10.4.1 Overview 171
10.4.2 Oral Drug Delivery 171
10.4.3 Nasal Drug Delivery 174
10.4.4 Buccal Drug Delivery 175

10.5 Conclusions and Future Perspectives

References 176

11 Chitosan-Based Systems for Mucosal Delivery of Biopharmaceuticals

Sonia Al-Qadi, Ana Grenha, and Carmen Remuñán-López

11.1 Introduction 181
11.2 Important Challenges for the Delivery of Biopharmaceuticals by Mucosal Routes 182
11.3 Interest in Chitosan for Mucosal Delivery of Biopharmaceuticals 184
11.3.1 Chitosan Physicochemical Properties 184
11.3.2 Biological Properties of Chitosan 185
11.3.3 Mucoadhesive and Permeation-Enhancing Properties 186
11.3.4 Chitosan Derivatives 187
11.4 Chitosan-Based Delivery Nanosystems for Mucosal Delivery of Biopharmaceuticals 188
11.4.1 Oral Delivery of Biopharmaceuticals 189
11.4.2 Nasal Delivery of Biopharmaceuticals 192
11.4.3 Pulmonary Delivery of Biopharmaceuticals 195
11.5 Conclusions and Future Perspectives 200
References 201

12 Chitosan-Based Delivery Systems for Mucosal Vaccination

Gerrit Borchard, Farnaz Esmaeili, and Simon Heuking

12.1 Introduction 211
12.2 Adjuvant Properties of Chitosan 212
12.3 Chitosan in the Delivery of Protein and Subunit Vaccines 213
12.4 Chitosan-Based Formulations of DNA Vaccines 215
12.5 Vaccine Formulations Using Chitosan in Combination with Other Polymers 216
12.6 Chitosan Derivatives in Vaccine Carrier Design 217
12.6.1 \(N,N,N\)-Trimethyl Chitosan 217
12.6.2 Nasal Delivery of TMC-Based Vaccine Formulations 218
12.6.3 Pulmonary Delivery of TMC-Based Vaccine Formulations 219
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5.4</td>
<td>PAMAM Dendron</td>
<td>269</td>
</tr>
<tr>
<td>15.6</td>
<td>Conclusions and Future Perspectives</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>

Part Three
Advanced Application of Chitosan and Derivatives for Biopharmaceuticals

16
Target-Specific Chitosan-Based Nanoparticle Systems for Nucleic Acid Delivery
Shardool Jain and Mansoor Amiji

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Nanotechnology in Vaccine and Drug Delivery</td>
<td>277</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Chitosan: A Versatile Biopolymer</td>
<td>278</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Chitosan for Delivery of Nucleic Acid Vaccines and Therapies</td>
<td>279</td>
</tr>
<tr>
<td>16.1.4</td>
<td>Passive versus Active Systemic Targeted Delivery</td>
<td>280</td>
</tr>
<tr>
<td>16.2</td>
<td>Chitosan-Based Nanoparticle Delivery Systems</td>
<td>283</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Chitosan-Based Nanodelivery Systems for DNA Vaccines</td>
<td>283</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Chitosan-Based Nanodelivery Systems for Nucleic Acid Therapy</td>
<td>285</td>
</tr>
<tr>
<td>16.3</td>
<td>Illustrative Examples of DNA Vaccine Delivery</td>
<td>286</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Mucosal Vaccination</td>
<td>286</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Systemic Vaccination</td>
<td>287</td>
</tr>
<tr>
<td>16.4</td>
<td>Illustrative Examples of Nucleic Acid Delivery Systems for Cancer Therapy</td>
<td>288</td>
</tr>
<tr>
<td>16.5</td>
<td>Illustrative Examples of Nucleic Acid Delivery Systems for Anti-Inflammatory Therapy</td>
<td>291</td>
</tr>
<tr>
<td>16.6</td>
<td>Conclusions and Future Perspectives</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>295</td>
</tr>
</tbody>
</table>

17
Functional PEGylated Chitosan Systems for Biopharmaceuticals
Hee-Jeong Cho, Goen Kim, Hyeok-Seung Kwon, and Yu-Kyoung Oh

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>17.1.1</td>
<td>Physicochemical Properties of PEGylated Chitosan</td>
<td>302</td>
</tr>
<tr>
<td>17.1.2</td>
<td>Biological Properties of PEGylated Chitosan</td>
<td>303</td>
</tr>
<tr>
<td>17.2</td>
<td>PEGylated Chitosan for the Delivery of Proteins and Peptides</td>
<td>304</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Protein Delivery</td>
<td>304</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Peptide Delivery</td>
<td>307</td>
</tr>
<tr>
<td>17.3</td>
<td>PEGylated Chitosan for Delivery of Nucleic Acids</td>
<td>308</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Plasmid DNA Delivery</td>
<td>308</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Oligonucleotide Delivery</td>
<td>310</td>
</tr>
<tr>
<td>17.4</td>
<td>PEGylated Chitosan for Delivery of Other Macromolecular Biopharmaceuticals</td>
<td>311</td>
</tr>
<tr>
<td>17.5</td>
<td>PEGylated Chitosan Used for Cellular Scaffolds</td>
<td>313</td>
</tr>
<tr>
<td>17.6</td>
<td>Conclusions and Future Perspectives</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>314</td>
</tr>
</tbody>
</table>

18
Stimuli-Sensitive Chitosan-Based Systems for Biopharmaceuticals
Cuiping Zhai, Jinfang Yuan, and Qingyu Gao

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>18.2</td>
<td>pH-Sensitive Chitosan-Based Systems</td>
<td>319</td>
</tr>
</tbody>
</table>
18.3 Thermosensitive Chitosan-Based Systems
18.4 pH-Sensitive and Thermosensitive Chitosan-Based Systems
18.5 pH- and Ionic-Sensitive Chitosan-Based Systems
18.6 Photo-Sensitive Chitosan-Based Systems
18.7 Electrical-Sensitive Chitosan-Based Systems
18.8 Magnetic-Sensitive Chitosan-Based Systems
18.9 Chemical Substance-Sensitive Chitosan-Based Systems
18.10 Conclusions and Future Perspectives
References

19 Chitosan Copolymers for Biopharmaceuticals
Ramon Novoa-Carballal, Ricardo Riguera, and Eduardo Fernandez-Megia

19.1 Introduction
19.1.1 General Copolymerization Methods
19.1.2 Chitosan Copolymers for Biopharmaceuticals
19.1.3 The Integrity of the Chitosan Chain in Chitosan Copolymers
19.2 Chitosan-g-Poly(Ethylene Glycol)
19.2.1 Synthetic Procedures towards the Preparation of Chitosan-g-Poly(Ethylene Glycol)
19.2.2 Applications of Chitosan-g-Poly(Ethylene Glycol) with Biopharmaceuticals
19.3 Chitosan-g-Polyethylenimine
19.3.1 Synthetic Strategies toward the Preparation of Chitosan-g-Polyethylenimine
19.3.2 Applications to Gene Therapy
19.4 Other Copolymers of Chitosan
19.4.1 Chitosan-g-Polypeptide
19.4.2 Grafting of Chitosan to Thermoresponsive Polymers
19.4.3 Chitosan-g-Methacrylates
19.5 Copolymers of Chitosan with Promising Applications
19.5.1 Chitosan-g-Polyesters
19.5.2 Chitosan-g-Polysaccharides
19.5.3 Block Copolymers of Chitosan
19.5.4 Chitosan-g-Dendrimer
19.6 Conclusions and Future Perspectives
References

20 Application of Chitosan for Anticancer Biopharmaceutical Delivery
Claudia Philippi, Brigitta Loretz, Ulrich F. Schaefer, and Claus-Michael Lehr

20.1 Introduction
20.2 Chitosan and Cancer: Intrinsic Antitumor Activity of the Polymer Itself
20.2.1 Effects of Chitosan, Low-Molecular Weight Chitosan, and Chitooligosaccharides
20.2.2 Effects of Chitosan Nanoparticles
20.3 Chitosan Formulations Developed for Classic Anticancer Drugs
20.3.1 Chemically Modified Chitosans or Chitosan–Drug Conjugates
20.3.2 Nanoparticulate Carrier Systems
20.3.3 Chitosans as Absorption Enhancers
References
20.4 Biopharmaceuticals Delivered by Chitosan Preparations 384
20.4.1 Nucleic Acid–Based Therapeutics 385
20.4.2 Peptide-Based Actives for Cancer Treatment 387
20.5 Active Targeting Strategies and Multifunctional Chitosan Formulations 388
20.5.1 Active Targeting Strategies 388
20.5.2 Multifunctional Chitosan Nanoparticles 389
20.6 Conclusions and Future Perspectives 389
References 390

21 Chitosan-Based Biopharmaceutical Scaffolds in Tissue Engineering and Regenerative Medicine 393
Tao Jiang, Meng Deng, Wafa I. Abdel- Fattah, and Cato T. Laurencin

21.1 Introduction 393
21.2 Fabrication of Chitosan-Based Biopharmaceuticals Scaffolds 395
21.2.1 Techniques for Fabricating Chitosan-Based Scaffolds 395
21.2.2 Functionalization of Chitosan-Based Scaffolds via Biopharmaceuticals 402
21.3 Applications of Chitosan-Based Biopharmaceutical Scaffolds in Tissue Engineering and Regenerative Medicine 403
21.3.1 Regeneration of Soft Tissue 404
21.3.2 Regeneration of Hard Tissue 410
21.4 Future Trends: Regenerative Engineering 416
21.5 Conclusions and Future Perspectives 417
Acknowledgments 417
References 418

22 Wound-Healing Properties of Chitosan and Its Use in Wound Dressing Biopharmaceuticals 429
Tyler G. St. Denis, Tianhong Dai, Ying-Ying Huang, and Michael R. Hamblin

22.1 Introduction 429
22.2 Brief Review of Wound Repair 430
22.2.1 Inflammatory Phase 430
22.2.2 Proliferative Phase 431
22.2.3 Remodeling Phase 432
22.3 Wound-Healing Effects of Chitosan 433
22.3.1 In Vitro Studies 433
22.3.2 In Vivo Studies 435
22.3.3 Clinical Studies 438
22.4 Chitosan for Wound Therapeutics Delivery 440
22.4.1 Antimicrobials 440
22.4.2 Combination with Photodynamic Therapy 442
22.4.3 Growth Factors 443
22.4.4 Delivery of Other Drugs 444
22.5 Conclusions and Future Perspectives 444
Acknowledgments 447
References 447