Tanja Wüstenberg

Cellulose and Cellulose Derivatives in the Food Industry
Related Titles

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Edition</th>
<th>Year</th>
<th>ISBN</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennan, J.G., Grandison, A.S. (eds.)</td>
<td>Food Processing Handbook</td>
<td></td>
<td>2012</td>
<td>978-3-527-32468-2</td>
<td>Also available in a variety of electronic formats</td>
</tr>
<tr>
<td>Norton, J.E., Fryer, P., Norton, I.</td>
<td>Formulation Engineering of Foods</td>
<td></td>
<td>2013</td>
<td>978-0-470-67290-7</td>
<td>Also available in a variety of electronic formats</td>
</tr>
<tr>
<td>Dunford, N. (ed.)</td>
<td>Food and Industrial Bioproducts and Bioprocessing</td>
<td></td>
<td>2012</td>
<td>978-0-813-82105-4</td>
<td>Also available in a variety of electronic formats</td>
</tr>
<tr>
<td>Bhandari, B.R., Roos, Y. (eds.)</td>
<td>Food Materials Science and Engineering</td>
<td></td>
<td>2012</td>
<td>978-1-405-19922-3</td>
<td>Also available in a variety of electronic formats</td>
</tr>
</tbody>
</table>
Tanja Wüstenberg

Cellulose and Cellulose Derivatives in the Food Industry

Fundamentals and Applications
Contents

Preface XV
List of Abbreviations XVII

1 General Overview of Food Hydrocolloids 1
1.1 Introduction to the World of Hydrocolloids 1
1.2 Plant Extracts 2
1.2.1 Agar 2
1.2.2 Alginates and PGA 6
1.2.3 Carrageenan 10
1.2.4 Pectins 16
1.2.5 Native and Modified Starches 21
1.2.6 Furcellaran 27
1.2.7 Larch Gum 28
1.3 Seed Flours 29
1.3.1 Guar Gum 29
1.3.2 Locust Bean Gum (Carob) 32
1.3.3 Tara Gum 34
1.3.4 Tamarind Seed Gum 36
1.3.5 Konjac Gum 37
1.4 Exudates 39
1.4.1 Acacia Gum/Gum Arabic 39
1.4.2 Tragacanth 43
1.4.3 Karaya Gum 45
1.4.4 Ghatti Gum 48
1.5 Bacterial Polysaccharides 50
1.5.1 Xanthan 50
1.5.2 Others 53
1.6 Overview Tables for the Most Important Cellulose Derivatives 60
1.7 Commercial Development – Global Market 65
References 68
4.8.3 Colloidal MCC 159
4.9 Food Applications with Typical Formulations 159
4.9.1 Baked Goods, Snacks, and Fillings 161
4.9.2 Dairy Products – Ice Cream, Desserts, and Cheese Preparations 163
4.9.3 Whipping Creams – Dairy and Vegetable Fat Based 166
4.9.4 Confectionery 169
4.9.5 Beverages (RTD) 171
4.9.6 Soups, Sauces, Salad Dressings, Marinades, and Spreads 176
4.9.7 Meat Products 180
4.9.8 Applications for Powdered Cellulose 180
4.10 Non-food Applications 181
4.11 Nutritional Properties 181
4.12 Legislation 182
References 183

5 Fundamentals of Water-Soluble Cellulose Ethers and Methylcellulose 185
5.1 Manufacturing Process of Cellulose Ethers 185
5.1.1 General Principles 185
5.1.2 Production of the Monoether Methylcellulose 188
5.2 Chemistry 190
5.3 Rheology 191
5.3.1 General Swelling and Dissolution Behaviour of Cellulose Ethers 191
5.3.1.1 Factors of Influence 191
5.3.1.2 Stages of Swelling to Dissolution 194
5.3.2 Dissolution Behaviour of the Monoether Methylcellulose 196
5.3.2.1 Suitable Solvents 196
5.3.2.2 Physicochemical Data 197
5.3.2.3 Molecular Weight and Viscosity 198
5.3.2.4 Rheological Profile – Factors Influencing the Cold Viscosity 198
5.3.2.5 Surface Activity of Aqueous Solutions 204
5.3.2.6 Mixtures and Blending for Viscosity Adjustment 206
5.3.2.7 Available Solid Forms of MC 208
5.3.3 Gelation of Methylcellulose 208
5.3.3.1 Basics and Relationships 208
5.3.3.2 Influence of Solvent on Gelation 214
5.3.3.3 Mechanism and Cause of Heat-Induced Gelation 216
5.3.3.4 Non-thermal Gelation 218
5.3.3.5 Difference between Methylcellulose and HPMC 218
5.3.3.6 Gel Strength of Different Food Binders 219
5.3.4 Dispersion and Hydration 219
5.3.5 Technique of Delayed Hydration 222
5.3.6 Functional Properties Resulting from Methylation 223
5.3.7 Behaviour of Methylcellulose with Other Ingredients 224
5.3.8 Methylcellulose and HPMC for Fat Reduction in Coatings 230
5.3.9 Emulsifying Properties of Methylcellulose 233
5.4 Stability 235
5.4.1 Storage Stability of Cellulose Ethers 235
5.4.2 Microbiological Stability 236
5.4.3 Process Stability after Hydration 237
5.5 Rheometry 241
5.5.1 Analytical Procedures to Define Substitution of MC 241
5.5.2 Determination of the Molecular Weight 242
5.5.3 Methods of Identification and Quantitative Determination 242
5.6 Synergies with Other Hydrocolloids 242
5.7 Food Applications with Typical Formulations 243
5.7.1 Bakery Products 244
5.7.1.1 Functions and Overview 244
5.7.1.2 Typical Formulations 245
5.7.2 Fillings 248
5.7.2.1 Functions and Overview 248
5.7.2.2 Typical Formulations 248
5.7.3 Glazes, Predusts, Coatings, and Batters 248
5.7.3.1 Functions and Overview 248
5.7.3.2 Typical Formulations 250
5.7.4 Reformed and Extruded Products 250
5.7.4.1 Functions and Overview 250
5.7.4.2 Typical Formulations 252
5.7.5 Soups and Sauces, Salad Dressings, and Marinades 252
5.7.5.1 Functions and Overview 252
5.7.5.2 Starch–Methylcellulose Synergism in Sauces 256
5.7.5.3 Traditional Soups, Sauces, Toppings 256
5.7.5.4 Emulsions 258
5.7.6 Confectionery and Desserts 260
5.7.7 Meat and Fish Products 260
5.7.8 Pet Food and Animal Feed 260
5.8 Non-food Applications 263
5.9 Nutritional Properties 271
5.10 Legislation 272
References 273

6 Ethylcellulose 275
6.1 Manufacturing 275
6.2 Chemistry 276
6.3 Rheology 277
6.3.1 Physicochemical Parameters 277
6.3.2 Dissolution Behaviour 278
6.3.2.1 Solubility in Water 278
6.3.2.2 Suitable Solvents 279
6.3.2.3 Viscosity–Concentration Relationships 281
8 Hydroxypropylmethylcellulose 343
8.1 Manufacturing 343
8.2 Chemistry 344
8.3 Rheology 345
8.3.1 Dissolution Behaviour 345
8.3.2 Gelation of Hydroxypropylmethylcellulose 347
8.3.3 Behaviour of HPMC with Other Ingredients 348
8.4 Stability 350
8.5 Rheometry 351
8.6 Synergies with Other Hydrocolloids 352
8.7 Food Applications with Typical Formulations 352
8.7.1 Foams 352
8.7.2 Films and Coatings with HPMC 354
8.7.2.1 Overview 354
8.7.2.2 Typical Formulations 354
8.7.3 Fillings 356
8.7.4 Bakery Products with HPMC 358
8.7.4.1 Traditional Baked Goods 358
8.7.4.2 Gluten-Free Products 361
8.7.5 Chilled and Frozen Dairy Products and Desserts 363
8.7.5.1 Functions and Overview 363
8.7.5.2 Typical Formulations 364
8.7.6 Confectionery 366
8.7.7 Reformed Products with HPMC 368
8.7.8 Soups, Sauces, Salad Dressings, and Marinades 370
8.7.9 Beverages 372
8.7.9.1 Functions and Overview 372
8.7.9.2 Typical Formulations 372
8.7.10 Flavour Concentrates 372
8.7.10.1 Functions and Overview 372
8.7.10.2 Typical Formulations 374
8.8 Non-food Applications 375
8.9 Nutritional Properties 375
8.10 Legislation 375
References 376

9 Methylethylcellulose 379
9.1 Manufacturing 379
9.2 Chemistry 380
9.3 Rheology 381
9.3.1 Dissolution Behaviour 381
9.3.2 Gelation and Behaviour with Other Ingredients 382
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.6.2</td>
<td>Injection Brines</td>
<td>458</td>
</tr>
<tr>
<td>10.9.6.3</td>
<td>Sausage Casings</td>
<td>459</td>
</tr>
<tr>
<td>10.9.7</td>
<td>Pet Food and Animal Feed</td>
<td>460</td>
</tr>
<tr>
<td>10.9.8</td>
<td>Wine</td>
<td>461</td>
</tr>
<tr>
<td>10.9.8.1</td>
<td>Summary</td>
<td>461</td>
</tr>
<tr>
<td>10.10</td>
<td>Non-food Applications</td>
<td>464</td>
</tr>
<tr>
<td>10.10.1</td>
<td>Applications for Standard Grades of CMC – Overview</td>
<td>464</td>
</tr>
<tr>
<td>10.10.2</td>
<td>Technical and Regulated CMC Applications</td>
<td>466</td>
</tr>
<tr>
<td>10.10.3</td>
<td>General Overview for Use of CMC</td>
<td>471</td>
</tr>
<tr>
<td>10.11</td>
<td>Nutritional Properties</td>
<td>473</td>
</tr>
<tr>
<td>10.12</td>
<td>Legislation</td>
<td>473</td>
</tr>
<tr>
<td>10.12.1</td>
<td>European Union</td>
<td>473</td>
</tr>
<tr>
<td>10.12.2</td>
<td>Other Countries (Non-EU)</td>
<td>476</td>
</tr>
<tr>
<td>References</td>
<td>477</td>
<td></td>
</tr>
</tbody>
</table>

11 Crosslinked Sodium Carboxymethylcellulose | 479 |
11.1	Manufacturing Process	479
11.2	Chemistry	479
11.3	Rheology	480
11.3.1	Dissolution Behaviour	480
11.3.2	Gelation and Behaviour with Other Ingredients	481
11.4	Stability	481
11.5	Rheometry	481
11.6	Synergies with Other Hydrocolloids	481
11.7	Food Applications with Typical Formulations	482
11.8	Non-food Applications	482
11.9	Nutritional Properties	482
11.10	Legislation	483
References	483	

12 Enzymatically Hydrolysed Carboxymethylcellulose | 485 |
12.1	Manufacturing Process	485
12.2	Chemistry	485
12.3	Rheology	487
12.3.1	Dissolution Behaviour	487
12.3.2	Gelation and Behaviour with Other Ingredients	487
12.4	Stability	487
12.5	Rheometry	488
12.6	Synergies with Other Hydrocolloids	488
12.7	Food Applications with Typical Formulations	489
12.8	Non-food Applications	489
12.9	Nutritional Properties	489
12.10	Legislation	490
Reference	490	