Whole Life-cycle Costing
Risk and Risk Responses

Halim A. Boussabaine
Liverpool School of Architecture and Building Engineering
The University of Liverpool
and
Richard J. Kirkham
School of Industrial and Manufacturing Science
Cranfield University

Blackwell Publishing
Whole Life-cycle Costing
Risk and Risk Responses
This page intentionally left blank
Whole Life-cycle Costing
Risk and Risk Responses

Halim A. Boussabaine
Liverpool School of Architecture and Building Engineering
The University of Liverpool
and
Richard J. Kirkham
School of Industrial and Manufacturing Science
Cranfield University
Contents

Foreword by Nigel Dorman, NHS Estates ix
Preface xi
Acknowledgements xiii

Part I: Fundamentals of Whole Life-cycle Costing

1 Towards an Understanding of Whole Life-cycle Costing 3
 1.1 Introduction 3
 1.2 Whole life-cycle costing: a brief history 4
 1.3 Defining whole life-cycle costing 7
 1.4 Risk and uncertainty in WLCC 9
 1.5 Subjectivity in WLCC 9
 1.6 Summary 10
 References 10

2 Whole Life-cycle Costing Risk Management 12
 2.1 Introduction 12
 2.2 Why has the construction industry failed to embrace WLCC? 12
 2.3 Why risk assessment in whole life costing? 13
 2.4 Data requirements in whole life-cycle costing and risk assessment 15
 2.5 Specifying a comprehensive set of objectives and measures for each WLCC component 17
 2.6 A framework for whole life costing risk management 22
 2.7 Summary 26
 References 26

3 Key Decisions in the Whole Life-cycle Costing Process 28
 3.1 Introduction 28
 3.2 Justification for investment and extraction of client requirements 29
 3.3 Key decisions at the conceptual development stage 31
 3.4 Key decisions at the detailed design stage 32
 3.5 Key decisions at the production stage 33
 3.6 Decisions at the operational stage 34
 3.7 Decisions at the end of economic life stage 35
 3.8 Summary 35
 References 36
4 Fundamentals of Whole Life-cycle Cost Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Concepts of the time value of money</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>WLCC calculation models</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Measuring economic performance in whole life-cycle costing</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>WLCC forecasting methods</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Benchmarking and key performance indicators</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>WLCC key performance indicators</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>54</td>
</tr>
</tbody>
</table>

5 Whole Life Risk Analysis Techniques

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Risk analysis</td>
<td>56</td>
</tr>
<tr>
<td>5.3</td>
<td>Qualitative risk analysis</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>Risk matrices</td>
<td>58</td>
</tr>
<tr>
<td>5.5</td>
<td>Risk registers</td>
<td>60</td>
</tr>
<tr>
<td>5.6</td>
<td>Event trees</td>
<td>61</td>
</tr>
<tr>
<td>5.7</td>
<td>Influence diagrams</td>
<td>62</td>
</tr>
<tr>
<td>5.8</td>
<td>SWOT analysis</td>
<td>63</td>
</tr>
<tr>
<td>5.9</td>
<td>Brainstorming sessions</td>
<td>63</td>
</tr>
<tr>
<td>5.10</td>
<td>Quantitative risk analysis</td>
<td>64</td>
</tr>
<tr>
<td>5.11</td>
<td>Probabilistic approaches to risk</td>
<td>64</td>
</tr>
<tr>
<td>5.12</td>
<td>Simulation</td>
<td>71</td>
</tr>
<tr>
<td>5.13</td>
<td>Sensitivity analysis</td>
<td>74</td>
</tr>
<tr>
<td>5.14</td>
<td>Markov theory</td>
<td>74</td>
</tr>
<tr>
<td>5.15</td>
<td>Deterministic measures of risk</td>
<td>75</td>
</tr>
<tr>
<td>5.16</td>
<td>Mathematical and analytical techniques</td>
<td>77</td>
</tr>
<tr>
<td>5.17</td>
<td>Artificial intelligence and fuzzy set theory</td>
<td>78</td>
</tr>
<tr>
<td>5.18</td>
<td>Summary</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>82</td>
</tr>
</tbody>
</table>

Part II: Whole Life-cycle Costing: The Design Stage

6 Design Service Life Planning

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>6.2</td>
<td>Estimation of service life for new structures</td>
<td>88</td>
</tr>
<tr>
<td>6.3</td>
<td>Estimation of the remaining service life for existing structures</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>104</td>
</tr>
</tbody>
</table>

7 Design Environmental Life-cycle Assessment

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td>7.2</td>
<td>Life-cycle assessment</td>
<td>107</td>
</tr>
<tr>
<td>7.3</td>
<td>Life-cycle assessment for design optimisation</td>
<td>110</td>
</tr>
</tbody>
</table>
8 Whole Life-cycle Cost Planning at the Design Stage 122
 8.1 Introduction 122
 8.2 Design whole life-cycle cost planning 122
 8.3 An integrated framework for WLC budget estimation 123
 8.4 Benchmarking WLC budgets 126
 8.5 Whole life cost planning 128
 8.6 Summary 141
 References 141

9 Whole Life Risk and Risk Responses at Design Stage 142
 9.1 Introduction 142
 9.2 Design whole life risk 143
 9.3 WLC risk identification and risk response measures at design/precontract stages 146
 9.4 WLCC risk categorisation 154
 9.5 Design WLCC risk quantification 154
 9.6 Design risk response measures 159
 9.7 Summary 161
 References 162

10 Whole Life-cycle Costing of Mechanical and Electrical Services: a Case Study 163
 10.1 Introduction 163
 10.2 Modelling the whole life cost of air-conditioning systems 164
 10.3 Data and methodology 166
 10.4 Results and discussion 170
 10.5 Summary 174
 References 174

Part III: Whole Life-cycle Costing: Construction and Occupancy Stages

11 Whole Life Risk and Risk Responses at Construction Stage 179
 11.1 Introduction 179
 11.2 WLCC at the construction stage 179
 11.3 WLCC risk during the construction stage 180
 11.4 Typology of WLCC risk at the construction stage 180
 11.5 Tools for allocating WLCC construction risk 187
 11.6 Significance of WLCC risk at the construction stage 188
The UK government has challenged the way its organisations deliver services, and has placed on them a duty to continuously improve in order to provide the services that people require economically, efficiently and effectively. This concept of ‘best value’ has dominated public sector capital investment policy in the UK since the 1990s. This has been the case particularly in large buildings and civil infrastructure projects such as hospitals, prisons and highways. As a result of the fundamental revisions in public procurement policy that have subsequently taken place, interest in and demand for the use of whole life-cycle costing (WLCC) techniques have risen to unprecedented levels. These policy changes are clearly demonstrated in recent government publications such as ‘Construction Procurement Guidance, No 7 Whole Life Costs’ (Office of Government Commerce), which states that ‘all procurement must be made solely on the basis of value for money in terms of the optimum combination of whole life costs and quality to meet the user’s requirements’. This view is fully endorsed by National Audit Office (NAO) policy and reinforced in their joint guide ‘Getting value for money from procurement – How auditors can help’. Consequently the award of public construction contracts based on simply the lowest capital cost bid is no longer recognised as good practice; best value must be taken into account and thereby WLCC should be fully appraised as part of the decision making process.

Within the UK public sector, WLCC must now be taken into account in all business cases, which aim to justify capital investment in construction. This applies to projects financed by traditional public capital as well as through the Private Finance Initiative (PFI) and Public–Private Partnership (PPP) approaches. The tangible effects of this essential change in procurement can be seen in, for example, the NHS ProCure 21 strategy. ProCure 21 promotes the better use of NHS assets and resources to achieve the right buildings and equipment, in the right place, in the right condition, of the right type, at the right cost (from both capital and whole life points of view), at the right time whilst facilitating effective response to future needs of the service with minimal impact on the environment. The ProCure 21 programme incorporates WLCC models in the tendering process for its frameworks and requires specific models to be completed for each NHS scheme subsequently undertaken by the framework contractors in England. These models have helped the NHS to make significant steps forward in attaining better value for money in capital procurement.
The transition to WLCC-based decision making has been slow and arduous, as this book will demonstrate. The techniques of WLCC have been viewed by many as a complex and highly uncertain science, two descriptions that are perhaps not wholly without merit. In respect of the latter, this book studies in depth the element of ‘risk’ in WLCC, and presents possible strategies and techniques for dealing with this. However, the continuing research into WLCC will provide us with better models with which to inform the decision making process and deliver best value to NHS stakeholders in the future. This book bears evidence to this, providing examples of the practical applications of the technique and the subsequent benefits that can be obtained.

The authors are to be congratulated on this timely and thought-provoking work, which shows the real value of WLCC, particularly within the economic constraints surrounding public procurement today. I feel sure the book will provide an indispensable reference to practitioners as well as a useful study guide to undergraduate and postgraduate students in the construction and economic disciplines.

Mr Nigel Dorman, BSc, CDipAF, FRICS, FIHEEM
Head of Construction Performance
National Health Service Estates
The United Kingdom Department of Health

Further reading

National Audit Office/OGC. Getting value for money from procurement – how auditors can help.

Useful websites

www.nhs-procure21.gov.uk
www.nao.gov.uk/guidance/topic.htm
www.ogc.gov.uk
The construction industry has recently experienced a paradigmatic shift in its approach to product delivery and the achievement of customer satisfaction. Where previously the design and construction teams placed a heavy emphasis on delivering buildings at the lowest capital cost, a greater awareness and desire to consider costs over the whole life of the building have prevailed. Clients now want buildings that demonstrate value for money over the long term, and are not interested simply in the design solution which is the least expensive. These changes have led to and highlighted the importance of whole life-cycle costing (WLCC) approaches to the design, construction and operation of buildings.

Rethinking Construction, the government report into the industry, strongly advocated the need to build right first time and every time by considering the long-term costs and economic performance of constructed assets. Additionally, recent health and safety legislation has also placed a specific duty on clients and designers to consider the potential risks of construction, maintenance and operation over the whole life of the building. These drivers, along with the increase in the number of buildings procured under the Private Finance Initiative (PFI) and Public–Private Partnerships (PPP) routes, have led to project stakeholders taking a greater interest in WLCC decision making.

So why is WLCC so important?

One of the reasons behind the rise in popularity of WLCC is that it provides a far more accurate assessment of the long-term cost effectiveness of a project than standard economic methods that focus solely on first costs or on operating-related costs in the very short term. WLCC provides vital information on projects such as those procured under PFI, where the consortium requires long-term cost forecasts of service provision that they will be contracted to provide. It also provides the government with knowledge about the anticipated economic liabilities that they will acquire when the asset becomes the property of state. This, however, is just one example of the benefits of WLCC.

Standard cost and value analysis techniques are generally used to quantify and assess the economic implications of a building design. While these techniques do provide a basis for making project cost decisions, they often do not account for many of the parameters, which may affect the actual project value or cost. The existing methods also fail to consider formal decision making processes and risk assessment methods in performing a cost benefit analysis. Investments in buildings are long-lived and as a consequence involve some degree of uncertainty over the life of the building, and the operational and maintenance costs, amongst other factors. If there is substantial uncertainty concerning cost and time information, then a WLCC analysis may have little
value for decision making if it fails to account for this. Therefore, it is essential to assess the degree of uncertainty associated with the WLCC results and to take this additional information into account when making decisions.

The book is structured in three parts, each reflecting the importance of WLCC throughout the various stages of the whole life of a building or constructed asset. Although the examples in this book are taken from the construction industry, the intentional aim of this book is to be as generic as possible, demonstrating WLCC with risk assessment as universally applicable to many other capital investment decision making scenarios. The book presents a logical approach to the understanding, development and execution of a WLCC analysis, with the express intention of promoting and inspiring confidence in the process.

Part I deals with fundamentals of WLCC and consists of five chapters, which provide a general background and appreciation of WLCC concepts, whole life risk management techniques and key decision making milestones through the project life. Throughout this book, the terms ‘building asset, building facility and project’ are used interchangeably and are taken in their widest possible meaning, to incorporate all aspects of the development from inception to eventual decommissioning.

Part II covers aspects relating to WLCC risks and risk responses during the design stage, and consists of five chapters. A key theme in this Part is the concept of integrating service life forecasting, environmental life-cycle assessment and WLCC. Additionally, it also introduces a practical framework for assessing whole life risks and risk responses during the design stage. Part II also includes an innovative framework for developing WLCC budget estimates. The Part concludes with a case study on the practical application of WLCC to the selection of mechanical services. This Part is written in a way that should provide stimulus to the reader to think about WLCC and risk during the design stage, and encourage a holistic approach to design decision making.

Part III considers WLCC issues during the post-design stage of the building life. This includes the analysis of WLCC risks and risk responses during the construction and operational phases. Example risk registers are presented here with guidance on how the analyst should approach and deal with risk. We will also look at some innovative approaches to operational stage WLCC analysis, both for new projects and existing buildings. This Part concludes with a case study example of the application of WLCC in asset occupancy analysis.

Throughout, the book contains a mixture of established theory, practice and innovation relating to WLCC budgeting and risk management. Although we cannot expect to cover all aspects of WLCC, guidance on suitable sources of additional information is provided. Readers who wish to explore some of the issues in the book in greater detail should refer to the list of further reading and references at the end of each chapter.

Halim Boussabaine
Richard Kirkham
Liverpool
May 2003
Acknowledgements

The authors would like to express their sincere appreciation to Mr Ian Hunter and Mr Jeremy Marshall of The Liverpool School of Architecture and Building Engineering, University of Liverpool, who assisted us continually throughout the preparation of this book. Similarly we would like to thank Mr Dennis Bastow and his staff at NHS Estates who have provided us with excellent research support throughout the past 3 years, and particularly to Mr Nigel Dorman for writing the foreword. We would also like to express our gratitude to the following colleagues whom assisted us in delivering this book: Dr Dana Vanier (Institute for Research in Construction, National Research Council, Canada); the members of Whole Life Cost Forum; Dr Stephen J Kirk (Kirk Associates) and Mr Ed Barlett (WS Atkins, Faithful and Gould). The authors would like to acknowledge the many other sources of information, too numerous to list here, which assisted us in delivering this publication.

Finally, we would like to thank our families for their support and encouragement, who no doubt found the ordeal of helping us through the long nights as equally stressful as we did.

The authors affirm that any mistakes and errors in the book are entirely our responsibility.

 Ideals are like stars. We never reach them but, like the mariners on the sea, we chart our course by them.

Carl Schurz