Volume 2 of the second edition of the fully revised and updated Digital Signal and Image Processing using MATLAB® is essentially a collection of examples and exercises which also presents applications of digital signal- or image processing, and techniques which were not touched upon in the previous volume. It will be of particular benefit to readers who already possess a good knowledge of MATLAB®, a command of the fundamental elements of digital signal processing and who are familiar with both the fundamentals of continuous-spectrum spectral analysis and who have a certain mathematical knowledge concerning Hilbert spaces.

More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.

Gérard Blanchet is Professor at Ecole Nationale Supérieure des Télécommunications, Paris, France. In addition to his research, teaching and consulting activities, he is the author of several books on automatic control systems, digital signal processing and computer architecture. He also develops tools and methodologies to improve knowledge acquisition in various fields.

Maurice Charbit is Professor at Ecole Nationale Supérieure des Télécommunications, Paris, France, where he teaches several courses in signal processing and digital communications. His research interests include statistics, speech and image processing.
Digital Signal and Image Processing using MATLAB®
Contents

Foreword ix
Notations and Abbreviations xi

Chapter 1 Recap on Digital Signal Processing 1
1.1 The sampling theorem 2
1.2 Spectral contents 7
1.2.1 Discrete-time Fourier transform (DTFT) 7
1.2.2 Discrete Fourier transform (DFT) 8
1.3 Case of random signals 10
1.4 Example of the Dual Tone Multi-Frequency (DTMF) 11

Chapter 2 Additional Information About Filtering 15
2.1 Filter implementation 15
2.1.1 Examples of filter structures 16
2.1.2 Distributing the calculation load in an FIR filter 20
2.1.3 FIR block filtering 21
2.1.4 FFT filtering 23
2.2 Filter banks 29
2.2.1 Decimation and expansion 30
2.2.2 Filter banks 34
2.3 Ripple control 42
2.3.1 Principle 42
2.3.2 Programming 44

Chapter 3 Image Processing 51
3.1 A little geometry 51
3.1.1 3D object 51
3.1.2 Calibration of cameras 53
3.2 Pyramidal decompositions 62
3.2.1 Pyramidal decomposition given by Burt and Adelson 64
3.2.2 Pyramidal decomposition using a Haar transformation . 65
3.2.3 Stepwise decomposition (lifting scheme) 66

Chapter 4 Numerical Calculus and Simulation 71
4.1 Simulation of continuous-time systems 71
4.1.1 Simulation by approximation 71
4.1.2 Exact model simulation 72
4.2 Solving of ordinary differential equations
(ODEs) ... 76
4.2.1 Conversion from continuous to discrete time 76
4.2.2 Linear case, continuous-time solution 78
4.2.3 Remarks on the Runge–Kutta methods 81
4.3 Systems of equations and zero-seeking 88
4.3.1 Zeros of a function using the Newton method 88
4.3.2 Roots of a polynomial with the Newton–Raphson method 89
4.3.3 Systems of nonlinear equations 90
4.4 Interpolation ... 91
4.4.1 Thiele’s interpolation 92
4.4.2 Another decomposition in continuous fractions 95
4.4.3 Natural cubic splines 96
4.5 Solving of linear systems 100
4.5.1 Jacobi method .. 100
4.5.2 Relaxation method 101
4.5.3 Cholesky factorization 102

Chapter 5 Speech Processing 105
5.1 A speech signal model 105
5.1.1 Overview ... 105
5.1.2 A typology of vocal sounds 106
5.1.3 The AR model of speech production 107
5.1.4 Compressing a speech signal 113
5.2 Dynamic Time Warping 116
5.2.1 The DTW algorithm 117
5.2.2 Examples of pathfinding rules 118
5.2.3 Cepstral coefficients 119
5.3 Modifying the duration of an audio signal 120
5.3.1 PSOLA ... 121
5.3.2 Phase vocoder .. 123
5.4 Eliminating the impulse noise 124
5.4.1 The signal model 125
5.4.2 Click detection .. 126
5.4.3 Restoration ... 128
Chapter 6 Selected Topics 131
6.1 Tracking the cardiac rhythm of the fetus 131
 6.1.1 Objectives . 131
 6.1.2 Separating the EKG signals 132
 6.1.3 Estimating cardiac rhythms 136
6.2 Extracting the contour of a coin 142
6.3 Constrained optimization and Lagrange
 multipliers . 146
 6.3.1 Equality-constrained optimization 146
 6.3.2 Quadratic problem with linear inequality constraints . . 149
 6.3.3 Portfolio optimization 153
6.4 Principal Component Analysis (PCA) 163
 6.4.1 Determining the principal components 164
 6.4.2 2-Dimension PCA 168
 6.4.3 Linear Discriminant Analysis 170
6.5 GPS positioning . 175
6.6 The Viterbi algorithm . 178
 6.6.1 Convolutional non-recursive encoder 179
 6.6.2 Decoding and hard decision 181

Chapter 7 Hints and Solutions 187
H1 Reminders on digital signal-processing 187
H2 Additional information on filtering 189
H3 Image Processing . 194
H4 Numerical calculus . 197
H5 Speech processing . 215
H6 Selected topics . 231

Chapter 8 Appendix 243
A1 A few properties of a matrix 243
A2 A few relations for matrices 246

Bibliography 247

Index 251
Foreword

This book represents the continuation to *Digital Signal and Image Processing: Fundamentals*. It is assumed that the reader possesses a good knowledge of the programming language MATLAB® and a command of the fundamental elements of digital signal processing: the usual transforms (the Discrete Time Fourier Transform (DTFT), the Discrete Fourier Transform and the z-Transform), the properties of deterministic and random signals, and digital filtering. Readers will also need to be familiar with the fundamentals of continuous-spectrum spectral analysis and have a certain amount of mathematical knowledge concerning vector spaces.

In order to prevent the reading becoming a penance, we will offer a few reminders of the basics wherever necessary. This book is essentially a collection of examples, exercises and case studies. It also presents applications of digital signal- or image processing, and techniques which were not touched upon in the previous volume.

Recap on digital signal processing

This section is devoted to the definitions and properties of the fundamental transforms used in digital signal processing: *Fourier transform*, *discrete time Fourier transform* and *discrete Fourier transform*. It concludes with a classic example which enables us to put some known results into practice.

Filter implementation

This section deals with the structures of filters, the introduction of parallelism into the filtering operations (block filtering and filter banks) and, by way of an example, the Parks–McClellan method for FIR filter synthesis (*finite impulse response*).

Image processing

The section given over to images offers a few geometrical concepts relating to the representation of 3D objects in a 2D space. Therein, we deal with problems
of calibration of cameras. In addition, image compression is also discussed, with the use of examples (pyramidal decompositions, lifting scheme).

Digital calculus and simulation

This section deals with the algorithms used in most domains in digital processing, and therefore far beyond mere signal processing. It only touches on the domain using a few examples of methods applied to problems of simulation, resolution of differential equations, zero-seeking, interpolation and iterative methods for solving linear systems.

Speech processing

After a brief introduction to speech production, we will discuss the representation of a speech signal by an autoregressive model, and its application to compression. Next we will give the descriptions of the techniques widely used in this field (*Dynamic Time Warping* and *PSOLA*) and, finally, an example of application with “decrackling” for audio recordings.

Selected topics

This last chapter presents case studies that go a little further in depth than the examples described in the previous sections. “Tracking the cardiac rhythm of the fetus” and “Extracting the contour of a coin” are classic examples of the application of the least squares method. Principal component analysis and linear discriminant analysis are basic methods for the classification of objects (in a very broad sense).

The section devoted to optimization under constraints could have been part of the section on numerical methods. The method of Lagrange multipliers is encountered in a multitude of applications. In terms of applications, we present the case of optimization of a stock portfolio.

We conclude with the example of the Viterbi algorithm for the hard decoding of convolutional codes. This algorithm is, in fact, a particular case for searching for the shortest possible path in a lattice.
Notations and Abbreviations

∅ empty set
\[\sum_{k,n} = \sum_k \sum_n \]
\[\text{rect}_T(t) = \begin{cases}
1 & \text{when } |t| < T/2 \\
0 & \text{otherwise}
\end{cases} \]
\[\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x} \]
\[1(x \in A) = \begin{cases}
1 & \text{when } x \in A \\
0 & \text{otherwise}
\end{cases} \quad \text{(indicator function of } A) \]
\[(a,b] = \{ x : a < x \leq b \} \]
\[\delta(t) = \begin{cases}
\text{Dirac distribution when } t \in \mathbb{R} \\
\text{Kronecker symbol when } t \in \mathbb{Z}
\end{cases} \]
\[\text{Re}(z) \quad \text{real part of } z \]
\[\text{Im}(z) \quad \text{imaginary part of } z \]
\[|x| \quad \text{integer part of } x \]
\[i \text{ or } j = \sqrt{-1} \]
x(t) \rightleftharpoons X(f) \quad \text{Fourier transform}
\[(x \ast y)(t) \quad \text{continuous time convolution} \]
\[= \int_{\mathbb{R}} x(u)y(t-u)du \]
\[(x \ast y)(t) \quad \text{discrete time convolution} \]
\[= \sum_{u \in \mathbb{Z}} x(u)y(t-u) = \sum_{u \in \mathbb{Z}} x(t-u)y(u) \]
\[y^{(n)}(t) = \frac{d^n y(t)}{dt^n}, \text{nth order derivative} \]
<table>
<thead>
<tr>
<th>Symbol/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{x}) or (\bar{\mathbf{x}})</td>
<td>vector (\mathbf{x})</td>
</tr>
<tr>
<td>(\mathbf{I}_N)</td>
<td>((N \times N))-dimension identity matrix</td>
</tr>
<tr>
<td>(\mathbf{A}^*)</td>
<td>complex conjugate of (\mathbf{A})</td>
</tr>
<tr>
<td>(\mathbf{A}^T)</td>
<td>transpose of (\mathbf{A})</td>
</tr>
<tr>
<td>(\mathbf{A}^H)</td>
<td>transpose-conjugate of (\mathbf{A})</td>
</tr>
<tr>
<td>(\mathbf{A}^{-1})</td>
<td>inverse matrix of (\mathbf{A})</td>
</tr>
<tr>
<td>(\mathbf{A}^#)</td>
<td>pseudo-inverse matrix of (\mathbf{A})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{P} { X \in A })</td>
<td>probability that (X \in A)</td>
</tr>
<tr>
<td>(\mathbb{E} { X })</td>
<td>expectation value of (X)</td>
</tr>
<tr>
<td>(X_c = X - \mathbb{E} { X })</td>
<td>zero-mean random variable</td>
</tr>
<tr>
<td>(\text{var} { X } = \mathbb{E} {</td>
<td>X_c</td>
</tr>
<tr>
<td>(\mathbb{E} { X</td>
<td>Y })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>ADPCM</td>
<td>Adaptive Differential PCM</td>
</tr>
<tr>
<td>AR</td>
<td>Autoregressive</td>
</tr>
<tr>
<td>ARMA</td>
<td>AR and MA</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>bps</td>
<td>Bits per second</td>
</tr>
<tr>
<td>cdf</td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td>CF</td>
<td>Clipping Factor</td>
</tr>
<tr>
<td>CZT</td>
<td>Causal (z)-Transform</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DCT</td>
<td>Discrete Cosine Transform</td>
</tr>
<tr>
<td>d.e./de</td>
<td>Difference equation</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DTFT</td>
<td>Discrete Time Fourier Transform</td>
</tr>
<tr>
<td>DTMF</td>
<td>Dual Tone Multi-Frequency</td>
</tr>
<tr>
<td>dsp</td>
<td>Digital signal processing/processor</td>
</tr>
<tr>
<td>e.s.d./esd</td>
<td>Energy spectral density</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FT</td>
<td>Continuous Time Fourier Transform</td>
</tr>
</tbody>
</table>
IDFT Inverse Discrete Fourier Transform
i.i.d./iid Independent and Identically Distributed
IIR Infinite Impulse Response
ISI InterSymbol Interference
LDA Linear discriminant analysis
lms Least mean squares
MA Moving Average
MAC Multiplication ACcumulation
OTF Optical Transfer Function
PAM Pulse Amplitude Modulation
PCA Principal Component Analysis
p.d. Probability Distribution
ppi Points per Inch
p.s.d./PSD Power Spectral Density
PSF Point Spread Function
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
rls Recursive least squares
rms Root mean square
r.p./rp Random process
SNR Signal to Noise Ratio
r.v./rv Random variable
STFT Short Term Fourier Transform
TF Transfer Function
WSS Wide (Weak) Sense Stationary (Second Order) Process
ZOH Zero-Order Hold
ZT z-Transform