Humanity’s ever-increasing hunger for mineral raw materials, caused by a growing global population and ever increasing standards of living, has resulted in economic geology becoming a subject of urgent importance.

This book provides a broad panorama of mineral deposits, covering their origin and geological characteristics, the principles of the search for ores and minerals, and the investigation of newly found deposits. Practical and environmental issues that arise during the life cycle of a mine and after its closure are addressed, with an emphasis on sustainable and “green” mining.

The central scientific theme of the book is to place the extraordinary variability of mineral deposits in the frame of fundamental geological processes.

The book is written for earth science students and practicing geologists worldwide. Professionals in administration, resource development, mining, mine reclamation, metallurgy, and mineral economics will also find the text valuable.

WALTER L. POHL is Emeritus Professor and former Dean of the Faculty of Geosciences at the Technical University of Braunschweig, Germany, and a consulting geologist in economic, engineering and environmental geology. For more information visit: www.walter-pohl.com

A companion website with additional resources is available at: www.wiley.com/go/pohl/geology
Economic Geology
To the Memory of Walther E. Petrascheck
(1906–1991)

Inspiring Geologist and Academic Teacher

COMPANION WEBSITE
This book has a companion website:
www.wiley.com/go/pohl/geology
with Figures and Tables from the book for downloading
Economic Geology Principles and Practice

Metals, Minerals, Coal and Hydrocarbons – Introduction to Formation and Sustainable Exploitation of Mineral Deposits

Walter L. Pohl
Contents

Preface xiii

Introduction 1

What are ore deposits? 1
Mining in the stress field between society and environment 2
The mineral resources conundrum 4

Part I Metalliferous Ore Deposits 5

1 Geological ore formation process systems (metallogenesis) 7

Synopsis 7

1.1 Magmatic Ore Formation Systems 8
 1.1.1 Orthomagmatic ore formation 11
 1.1.2 Ore deposits at mid-ocean ridges and in ophiolites 18
 1.1.3 Ore formation related to alkaline magmatic rocks, carbonatites
 and kimberlites 23
 1.1.4 Granitoids and ore formation processes 25
 1.1.5 Ore deposits in pegmatites 32
 1.1.6 Hydrothermal ore formation 35
 1.1.7 Skarn- and contact-metasomatic ore deposits 54
 1.1.8 Porphyry copper [Mo-Au-Sn-W] deposits 56
 1.1.9 Hydrothermal-metasomatic ore deposits 59
 1.1.10 Hydrothermal vein deposits 62
 1.1.11 Volcanogenic ore deposits 68

1.2 Supergene Ore Formation Systems 76
 1.2.1 Residual (eluvial) ore deposits 80
 1.2.2 Supergene enrichment by descending (vadose) solutions 82
 1.2.3 Infiltration as an agent of ore formation 88

1.3 Sedimentary Ore Formation Systems 92
 1.3.1 Black shales in metallogenesis 93
 1.3.2 Placer deposits 94
 1.3.3 Autochthonous iron and manganese deposits 100
 1.3.4 Sediment-hosted, submarine-exhalative (sedex) base metal deposits 107
1.4 Diagenetic Ore Formation Systems 110
 1.4.1 The European Copper Shale 114
 1.4.2 Diagenetic-hydrothermal carbonate-hosted Pb-Zn [F-Ba] deposits 116
 1.4.3 Diagenetic-hydrothermal ore formation related to salt diapirs 119

1.5 Metamorphic and Metamorphosed Ore Deposits 121

1.6 Metamorphogenic Ore Formation Systems 125

1.7 Metallogeny – Ore Deposit Formation in Space and Time 132
 1.7.1 Metallogenetic epochs and provinces 133
 1.7.2 Metallogeny and plate tectonics 134

1.8 Genetic Classification of Ore and Mineral Deposits 139

1.9 Summary and Further Reading 146

2 Economic geology of metals 149

Synopsis 149

2.1 The Iron and Steel Metals 149
 2.1.1 Iron 149
 2.1.2 Manganese 159
 2.1.3 Chromium 163
 2.1.4 Nickel 168
 2.1.5 Cobalt 173
 2.1.6 Molybdenum 175
 2.1.7 Tungsten (Wolfram) 179
 2.1.8 Vanadium 183

2.2 Base Metals 185
 2.2.1 Copper 185
 2.2.2 Lead and zinc 195
 2.2.3 Tin 202

2.3 Precious Metals 207
 2.3.1 Gold 207
 2.3.2 Silver 221
 2.3.3 Platinum and Platinum Group Metals 228

2.4 Light Metals 233
 2.4.1 Aluminium 233
 2.4.2 Magnesium 238

2.5 Minor and Speciality Metals 239
 2.5.1 Mercury 239
 2.5.2 Antimony 243
2.5.3 Arsenic 245
2.5.4 By-product electronic metals (selenium, tellurium, gallium, germanium, indium, cadmium) and silicon 247
2.5.5 Bismuth 250
2.5.6 Zirconium and hafnium 251
2.5.7 Titanium 254
2.5.8 Rare earth elements (REE, lanthanides) 257
2.5.9 Niobium and tantalum 261
2.5.10 Lithium 265
2.5.11 Beryllium 268
2.5.12 Uranium (and thorium) 270

2.6 Summary and Further Reading 283

Part II Non-Metallic Minerals and Rocks 285

3 Industrial minerals, earths and rocks 287

Synopsis 287

3.1 Andalusite, Kyanite and Sillimanite 288
 3.1.1 Andalusite 289
 3.1.2 Kyanite 290
 3.1.3 Sillimanite 291

3.2 Asbestos 291
 3.2.1 Asbestos mineralization types 292

3.3 Barite and Celestite 293
 3.3.1 Geochemistry 294
 3.3.2 Barite deposit types 296

3.4 Bentonite (Smectite Rocks) 299
 3.4.1 Bentonite deposit types 301

3.5 Boron 302
 3.5.1 Geochemistry 303
 3.5.2 Boron deposit types 303

3.6 Carbonate Rocks: Limestone, Calcite Marble, Marlstone, Dolomite 305
 3.6.1 Limestone 306
 3.6.2 Metamorphic calcite (and occasionally dolomite) marbles 306
 3.6.3 Marlstone 306
 3.6.4 Dolomite 307

3.7 Clay and Clay Rocks 308
 3.7.1 Clay deposit types 308
3.8 Diamond
3.8.1 Source and formation of diamonds
3.8.2 Diamond deposit types

3.9 Diatomite and Tripoli
3.9.1 Diatomite deposit types
3.9.2 Tripoli

3.10 Feldspar

3.11 Fluorite
3.11.1 Geochemistry
3.11.2 Fluorite deposit types

3.12 Graphite
3.12.1 Graphite deposit types

3.13 Gypsum and Anhydrite
3.13.1 Deposits of gypsum and anhydrite

3.14 Kaolin
3.14.1 Kaolin deposit types

3.15 Magnesite
3.15.1 Magnesite deposit types

3.16 Mica [Muscovite, Phlogopite, Vermiculite]
3.16.1 Muscovite and phlogopite
3.16.2 Vermiculite

3.17 Olivine
3.17.1 Olivine deposits

3.18 Phosphates
3.18.1 Geochemistry
3.18.2 Phosphate deposit types

3.19 Quartz and Silicon
3.19.1 Quartz deposit types

3.20 Quartzite
3.20.1 Metamorphic quartzite deposits
3.20.2 Sedimentary quartzite

3.21 Quartz Sand and Gravel
3.21.1 Industrial sand and gravel
3.21.2 Building sand and gravel
3.22 Sodium Carbonate, Sulfate and Alum 354
 3.22.1 Sodium sulphate 355
 3.22.2 Alum salts 355

3.23 Sulphur 355
 3.23.1 Geochemistry 356
 3.23.2 Deposit types of elementary sulphur 356

3.24 Talc and Pyrophyllite 358
 3.24.1 Talc deposit types 359
 3.24.2 Pyrophyllite 361

3.25 Volcaniclastic Rocks 362
 3.25.1 Pumice 362
 3.25.2 Perlite 363
 3.25.3 Trass 363

3.26 Wollastonite 364
 3.26.1 Wollastonite deposit formation 364

3.27 Zeolites 365
 3.27.1 Zeolite deposit types 366

3.28 Summary and Further Reading 367

4 Salt deposits (evaporites) 369

Synopsis 369

4.1 Salt Minerals and Salt Rocks 371
 4.1.1 Salt minerals 371
 4.1.2 Salt rocks 371

4.2 The Formation of Salt Deposits 376
 4.2.1 Salt formation today 376
 4.2.2 Salt formation in the geological past 384

4.3 Post-Depositional Fate of Salt Rocks 394
 4.3.1 Diagenesis and metamorphism of evaporites 394
 4.3.2 Deformation of salt rocks 397
 4.3.3 Forms and structures of salt deposits 398
 4.3.4 Supergene alteration of salt deposits 403

4.4 From Exploration to Salt Mining 405
 4.4.1 Exploration and development of salt deposits 405
 4.4.2 Geological practice of salt mining 406

4.5 Summary and Further Reading 409
Part III The Practice of Economic Geology

5 Geological concepts and methods in the mining cycle: exploration, exploitation and closure of mines

Synopsis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Economic Considerations</td>
<td>414</td>
</tr>
<tr>
<td>5.2 The Search for Mineral Deposits (Exploration)</td>
<td>416</td>
</tr>
<tr>
<td>5.2.1 The pre-exploration stage</td>
<td>416</td>
</tr>
<tr>
<td>5.2.2 Geological exploration</td>
<td>417</td>
</tr>
<tr>
<td>5.2.3 Geological remote sensing</td>
<td>420</td>
</tr>
<tr>
<td>5.2.4 Geochemical exploration</td>
<td>422</td>
</tr>
<tr>
<td>5.2.5 Geophysical exploration</td>
<td>428</td>
</tr>
<tr>
<td>5.2.6 Trenching and drilling</td>
<td>432</td>
</tr>
<tr>
<td>5.3 Development and Valuation of Mineral Deposits</td>
<td>437</td>
</tr>
<tr>
<td>5.3.1 Geological mapping and sampling</td>
<td>439</td>
</tr>
<tr>
<td>5.3.2 Ore reserve estimation and determination of grade</td>
<td>440</td>
</tr>
<tr>
<td>5.3.3 Valuation of mineral deposits</td>
<td>447</td>
</tr>
<tr>
<td>5.4 Mining and the Environment</td>
<td>448</td>
</tr>
<tr>
<td>5.4.1 Potential environmental problems related to mining and mine-site processing plants</td>
<td>450</td>
</tr>
<tr>
<td>5.5 Deep Geological Disposal of Dangerous Waste</td>
<td>458</td>
</tr>
<tr>
<td>5.6 Summary and Further Reading</td>
<td>462</td>
</tr>
</tbody>
</table>

Part IV Fossil Energy Raw Materials – Coal, Oil and Gas

6 Coal

Synopsis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 The Substance of Coal</td>
<td>471</td>
</tr>
<tr>
<td>6.1.1 Coal types</td>
<td>471</td>
</tr>
<tr>
<td>6.1.2 Petrography of coal</td>
<td>474</td>
</tr>
<tr>
<td>6.1.3 The chemical composition of coal</td>
<td>479</td>
</tr>
<tr>
<td>6.2 Peat Formation and Coal Deposits</td>
<td>487</td>
</tr>
<tr>
<td>6.2.1 Types and dimensions of coal seams</td>
<td>487</td>
</tr>
<tr>
<td>6.2.2 Concordant and discordant clastic sediments in coal seams</td>
<td>488</td>
</tr>
<tr>
<td>6.2.3 Peat formation environments</td>
<td>491</td>
</tr>
<tr>
<td>6.2.4 Host rocks of coal</td>
<td>495</td>
</tr>
<tr>
<td>6.2.5 Marker beds in coal formations</td>
<td>497</td>
</tr>
<tr>
<td>6.2.6 Coal formation in geological space and time</td>
<td>498</td>
</tr>
</tbody>
</table>
Wisely used, mineral resources create wealth, employment, a vital social and natural environment and peace. If the reverse of these conditions occurs only too often, illustrating the so-called “resource curse”, this should be attributed to the true perpetrators, namely irresponsible, weak or selfish leaders. This book, however, does not intend to provide rules for good governance. I wrote it as a broad overview on geoscientific aspects of mineral deposits, including their origin and geological characteristics, the principles of the search for ores and minerals, and the investigation of newly found deposits. In addition, practical and environmental aspects are addressed that arise during the life-cycle of a mine and after its closure. I am convinced that in our time, economic geology cannot be taught, studied or practised without an understanding of environmental issues. The scientific core of the book is the attempt to present the extraordinary genetic variability of mineral deposits in the frame of fundamental geological process systems. The comprehensive approach – covering materials from metal ores to minerals and hydrocarbons – is both an advantage and a loss. The second concerns the sacrifice of much detail but I chose the first for its benefit of a panoramic view over the whole field of economic geology. Being aware that the specialist level of subjects presented in this book fills whole libraries, I do hope that even experienced practitioners, academic teachers and advanced students of particular subjects will find the synopsis useful.

Over more than 50 years, five editions of this book were published in German. Since the first edition (Wilhelm & Walther E. Petrascheck 1950), the book was intended to provide a concise introduction to the geology of mineral deposits, including its applications to exploration and mining. The target audience has changed, however. Originally, it was written for students of mining engineering. Today, it is mainly directed to aspiring and practising geologists. Each of the seven chapters of the book was developed with my own students as a university course and should be useful to fellow academic teachers. After initially working in industry I never lost contact with applications of economic geology, which is my motive for the constant interweaving of practical aspects in the text and for dedicating one of the chapters to the practice of economic geology. For professional reference purposes, practitioners in geology and mining should appreciate this melange of science and application. Frequent explanations and references to environmental and health aspects of extraction and processing of ores and minerals should assist users involved in environmental work. To those with no background in geology, I recommend they acquire an introductory geoscience text for looking up terms that are employed but cannot be explained in the available space.

Compared with the last German edition (Pohl 2005), this book has been rewritten for an international public. Although it retains a moderate European penchant by referring to examples from this region, important deposits worldwide are preferentially chosen to explain genetic types and practical aspects. I trust that this will be useful to both scholars and practitioners, wherever they work. Generally, it was my ambition to present the state of the art in economic geology, by referring to and citing recent publications as well as earlier fundamental concepts. This should assist and motivate students to pursue topics to greater depth.

Many people have supported me in my life-long pursuit of theory and practice of economic geology, and helped with this book, especially by donating photographs. I cannot name them all but in captions, donors are acknowledged. Here, just let me say thank you.

Walter L. Pohl