Modeling and Simulation of Turbulent Flows

Roland Schiestel
Modeling and Simulation of Turbulent Flows
Modeling and Simulation of Turbulent Flows

Roland Schiestel
3.5. Invariants ... 94
3.6. Representation of tensorial functions 101
3.7. Fourier transform in the fluctuating field 110
3.8. Wavelet transform ... 114

Chapter 4. Methodology for One Point Closures 115
4.1. Order of magnitude estimate of terms in the turbulence transport equations .. 116
4.2. Application to the momentum equations, and the k and ε equations ... 119
4.3. Derivation of closure hypotheses 120
4.4. The formalist approach: Lumley’s invariant modeling 121
4.5. Examples of application .. 126
4.6. Realizability problem ... 131
4.7. Objectivity and material indifference 146
4.8. Diffusive correlations ... 149
4.9. Probability densities and stochastic models 152
4.10. Intermittency .. 156
4.11. Practicing with the development tools 158

Chapter 5. Homogenous Anisotropic Turbulence 159
5.1. The Craya equation .. 159
5.2. One-dimensional spectral properties in homogenous turbulent shear flows ... 163
5.3. Rapid part of pressure correlations in the rapid distortion of isotropic turbulence ... 164
5.4. Spectral models ... 166
5.5. Turbulence associated to a passive scalar 166
5.6. One point correlation equations in HAT 167
5.7. Examples of anisotropic homogenous turbulent flows 167
5.8. Rapid distortion theory for an homogenous turbulent flow 173
5.9. Additional information on linear solutions 177
5.10. Interdependency between differing closure levels: the spectral integral approach .. 178

Chapter 6. Modeling of the Reynolds Stress Transport Equations ... 183
6.1. The Reynolds stress transport equations and their trace 183
6.2. Modeling viscous dissipation terms 187
6.3. Modeling turbulent diffusion terms 188
6.4. Pressure-strain correlations ... 192
6.5. Determination of numerical constants 208
6.6. The realizability of the basic models 212
Chapter 7. Turbulence Scales

7.1. The turbulent kinetic energy dissipation rate equation
7.2. Modeling of diffusive terms
7.3. Modeling of source and sink terms
7.4. Determination of numerical constants
7.5. Corrective changes introduced on the dissipation equation
7.6. Reconsidering the ϵ equation: an asymptotic behavior with finite energy?
7.7. Tensorial volumes
7.8. Case of generation of turbulence injected at a fixed wavenumber
7.9. Modeling the dissipation tensor

Chapter 8. Advanced Closures: New Directions in Second Order Modeling

8.1. A new generation of second order models
8.2. Constraints related to the invariance properties with respect to the frame of reference
8.3. Other methods of approach for the pressure-strain correlations
8.4. Elimination of topographical parameters
8.5. Models based on the renormalization group (RNG models)
8.6. Memory effects
8.7. Pressure-velocity correlations
8.8. Internal variable models, structural models

Chapter 9. Modeling the Turbulent Flux Evolution Equations for a Passive Scalar

9.1. Evolution equations of the turbulent fluxes of a passive scalar
9.2. Order of magnitude of terms
9.3. Modeling dissipative terms
9.4. Modeling the turbulent diffusion terms
9.5. Modeling the pressure-passive scalar gradient correlations
9.6. Determination of numerical constants
9.7. New generation of modeling

Chapter 10. The Passive Scalar Variance and its Dissipation Rate

10.1. Transport equation for the variance of a passive scalar
10.2. Modeling the turbulent diffusion terms
10.3. Modeling the dissipation rate
10.4. Equation for the dissipation rate of the passive scalar variance
10.5. New directions of research
Chapter 11. Simplified Closures: Two and Three Transport Equation Models

11.1. The $k-R_{12}-\varepsilon$ model for turbulent thin shear flows .. 293
11.2. Two equation models .. 295
11.3. Algebraic modeling of the Reynolds stresses and the turbulent fluxes of a passive scalar ... 313
11.4. Non-linear models .. 317
11.5. Explicit algebraic models .. 323

Chapter 12. Simplified Closures: Zero and One Transport Equation Models

12.1. One equation models .. 332
12.2. Zero equation models .. 337

Chapter 13. Treatment of Low Reynolds Number Turbulence .. 347

13.1. Reynolds stress equations .. 348
13.2. Equation for the dissipation rate .. 349
13.3. The $k-R_{12}-\varepsilon$ model for wall flows ... 351
13.4. Modification of the turbulent fluxes in low intensity turbulence 353
13.5. Lower order models .. 355
13.6. Advanced modeling ... 363
13.7. Transition and laminarization ... 384

Chapter 14. Wall Treatment: Methods and Problems .. 385

14.1. The turbulent flow near a wall .. 385
14.2. Wall functions ... 388
14.3. Simple models for the viscous sublayer ... 398
14.4. Models using several transport equations for the viscous sublayer 403
14.5. New directions in the wall function formulation ... 403

Chapter 15. Influence of Archimedean Forces ... 407

15.1. Transport equations of turbulence in the Boussinesq approximation 407
15.2. Influence of buoyancy terms in the pressure-strain correlations 411
15.3. Influence of buoyancy forces on the pressure-temperature gradient correlations 412
15.4. Influence of buoyancy forces on the turbulence length scales or the dissipation rate ... 414
15.5. Two-dimensional horizontal flows in the presence of buoyancy forces 415
15.6. Algebraic modeling .. 416
15.7. Simplified models ... 419
15.8. Advanced models of the new generation ... 421
Chapter 16. Notes on the Problems Posed by the Study of Complex Flows

16.1. Curvature effect 424
16.2. Secondary motions.................................. 428
16.3. Rotation effects 430
16.4. Examples of complex turbulent flows for which the traditional one point closures fail 432
16.5. More on the Navier-Stokes equations in a relative frame of reference 433
16.6. Algebraic modeling of turbulence submitted to rotation 437
16.7. Implicit effects of rotation on the turbulent field 444
16.8. Rotating turbulence in the presence of active thermal effects 450
16.9. Coherent structures and modeling 452
16.10. Laminar/turbulent interface, free boundaries 452

Chapter 17. Variable Density Turbulent Flows 457

17.1. Averaging 458
17.2. Transport equations 459
17.3. Reynolds stress transport modeling in the framework of mass weighted averaging 464
17.4. Dissipation rate equation 466
17.5. Turbulent heat flux equations 467
17.6. Equation for the variance of temperature fluctuations 468
17.7. Two equation models and simplified models 469
17.8. Approach in non-weighted variables 470
17.9. Continuity 471
17.10. Statistical equations and modeling 472
17.11. Dissipation rate equation 475
17.12. Other approaches 475
17.13. Note on compressed turbulence 477

Chapter 18. Multiple Scale Models 481

18.1. Intuitive approach 487
18.2. Foundations of the method 493
18.3. Practical formulations and extensions 516
18.4. Other multiple scale models: models using spectral weighted integration 536

Chapter 19. Large Eddy Simulations 539

19.1. The filters 542
19.2. The filtered Navier-Stokes equations 546
19.3. Subgrid-scale modeling 551
19.4. Some remarks on the numerical methods 559
19.5. Simulation of homogenous flows 560
19.6. Simulation of non-homogenous turbulent wall flows 562
Chapter 19. Modeling and Simulation of Turbulent Flows

19.7. Estimate of subgrid-scale energy .. 566
19.8. Variable filters .. 567
19.9. Advanced subgrid-scale models ... 568
19.10. Flows undergoing laminar-turbulent transition 579
19.11. Other transport equation models 580
19.12. Approximate deconvolution methods 581
19.13. Simulations based on POD or on wavelets 584

Chapter 20. Synopsis on Numerical Methods 601
20.1. Numerical techniques ... 602
20.2. Plates ... 604

Exercises ... 645

Bibliography ... 661

Nomenclature ... 715

Index ... 719
When, rather more than 10 years ago, Roland Schiestel sent me the manuscript for a new book on turbulent flows that he had written, I was delighted to see that, while rigorous in the development of traditional approaches to turbulence, these were used to serve the main theme of the work, namely the modeling of turbulence in a form suitable for use in CFD solvers. His invitation to write a preface was gladly accepted and the words I wrote then perhaps still merit repeating:

The fluid mechanics of the world we live in is overwhelmingly dominated by that chaotic, unsteady motion called turbulent flow. Whether it be the flow of air and water in the natural environment or the man-managed interior environment, heat, momentum and mass exchange is brought about by large-scale, irregular eddying motions rather than by molecular diffusion and the design of virtually all types of thermo-fluids equipment: pipes, boilers, compressors, turbines, IC engines, condensers, etc. are variously designed to cope with or exploit the fact that the fluids passing through or around them are in turbulent motion.

This is such a commonplace observation that the reader may feel it hardly deserves mention. Yet, if – instead of using our eyes to view the world about us – we formed our view of the nature of fluid motion by reading fluid mechanics textbooks, what a different impression would be gained! From such a study we would understand that for a great many problems fluid viscosity is an irrelevancy, in most others the flow remains perfectly laminar while, to handle that rather inconvenient (and apparently unimportant) state called “turbulence” we refer to tediously compiled experimental correlations.

This distorted view of the relative importance of different strands of engineering fluid mechanics underlines the extent to which academics base the syllabus of their courses on what they know, rather than on what is relevant. That, I suppose, is as inescapable a fact of life as turbulent flow itself.
At the research level, the computation of turbulent flows has long been a subject receiving greater attention than its scant coverage in textbooks would lead us to expect. Now the rapid growth of software companies marketing commercial CFD packages (coupled with a corresponding growth of users of such software) has helped bring home the need for more – and more systematic – instruction on the internal workings of these black boxes. The aspect of CFD software where questions most often arise and where, through the absence of textbooks, they are least easily handled is on turbulence modeling. There is, manifestly, a need for a comprehensive textbook treatment of engineering turbulence modeling, perhaps particularly one written by an active contributor to the continuing advance of the subject.

The above was the scene, as I perceived it, in the early 1990s when the first edition of Roland Schiestel’s book appeared to warm reviews. Over those intervening years, of course, the world of turbulence modeling has moved on, and with the first edition and then an enlarged second edition sold out, the author and publisher have concluded that the time has come for a new edition. The fact that the earlier editions had sold out was a good indication that the book was meeting a real need and that the structure and philosophy should remain intact – as it has. For example, the book rightly focuses on second-moment closure for it is only at this level that the subject can be developed formally as a branch of mathematical physics (having adopted that starting point, simpler levels of closure naturally emerge as particularly limiting cases that are applicable under increasingly restricted circumstances). Moreover, without recourse to modeling the unknown processes in the second-moment equations, an examination of the exact generation terms explains, at least qualitatively, so many of the paradoxes of turbulent shear flows. For example: why turbulent mixing typically results in twice as much heat flow at right angles to the mean temperature gradient as along it; why a secondary strain associated with streamline curvature whose magnitude is only 2% of the primary strain produces a 25% modification in the turbulent shear stress; or why, in orthogonal mode rotation, a relatively weak Coriolis force augments shear stress on the pressure surface by 10% whereas further increase in the rotation rate produces no further augmentation.

Thus, the fabric and style of the very successful original version are retained in this new edition. Among the several new additions, is the inclusion of new approaches to the economical handling of the near-wall region where “wall functions” are normally adopted to escape the crippling cost of a fine-scale resolution of the sublayer and buffer region. The usual log-law based wall functions had such a narrow range of applicability that alternative strategies were sorely needed. These are now included in a new presentation of this material. The number of references has also increased by some 30%, the great majority of which are to works appearing in the last five years. Thus, this new edition continues to serve admirably both those in industrial CFD needing to understand the physical basis of
their software as well as those engaged in or about to start their research in turbulence modeling.

In the foreword to the original edition I had written: “turbulence modeling is still seen by many as a black art founded on bad physics and capable of producing computed flow patterns in accord with measurements only by the arbitrary, case-by-case adjustment of a sackful of empirical constants and other less reputable fudges”. That perception is, happily, much less commonly found today. In France, Roland Schiestel’s previous editions have been a major contributor to the better-founded appreciation of turbulence modeling by the scientific and industrial communities. May this new edition continue the good work!

Brian E. LAUNDER
Manchester