Practical Flatfish Culture and Stock Enhancement

Editors

H.V. Daniels and W.O. Watanabe

A John Wiley & Sons, Ltd., Publication
Practical Flatfish Culture and Stock Enhancement
Practical Flatfish Culture and Stock Enhancement

Editors

H.V. Daniels and W.O. Watanabe
Contents

Contributors

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAS Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Harry V. Daniels and Wade O. Watanabe

Acknowledgments

<table>
<thead>
<tr>
<th>Section 1: North and South America Culture</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Halibut aquaculture in North America</td>
<td>3</td>
</tr>
<tr>
<td>Nick Brown</td>
<td></td>
</tr>
<tr>
<td>1.1 Life history and biology</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Broodstock</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Biosecurity</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Photothermal conditioning</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Monitoring gonad development</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Larval culture</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Potential for stock enhancement</td>
<td>17</td>
</tr>
<tr>
<td>1.8 Growout</td>
<td>17</td>
</tr>
<tr>
<td>1.9 Production economics</td>
<td>21</td>
</tr>
<tr>
<td>1.10 Summary: industry constraints and future expectations</td>
<td>22</td>
</tr>
<tr>
<td>2 Culture of Chilean flounder</td>
<td>30</td>
</tr>
<tr>
<td>Alfonso Silva</td>
<td></td>
</tr>
<tr>
<td>2.1 Life history and biology</td>
<td>30</td>
</tr>
<tr>
<td>2.2 Broodstock husbandry</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Larval culture</td>
<td>38</td>
</tr>
<tr>
<td>2.4 Weaning and nursery culture and grow out</td>
<td>40</td>
</tr>
<tr>
<td>2.5 Growout</td>
<td>41</td>
</tr>
<tr>
<td>2.6 Needs for future research</td>
<td>43</td>
</tr>
<tr>
<td>3 California halibut</td>
<td>46</td>
</tr>
<tr>
<td>Douglas E. Conklin and Raul Piedrabita</td>
<td></td>
</tr>
<tr>
<td>3.1 Broodstock culture</td>
<td>47</td>
</tr>
<tr>
<td>3.2 Spawning</td>
<td>48</td>
</tr>
<tr>
<td>3.3 Larval rearing</td>
<td>50</td>
</tr>
<tr>
<td>3.4 Juvenile culture</td>
<td>53</td>
</tr>
</tbody>
</table>
3.5 Density 56
3.6 Commercial trials 57

4 Culture of summer flounder 65

David Bengtson and George Nardi

4.1 Life history and biology 65
4.2 Broodstock husbandry 67
4.3 Larval culture 68
4.4 Nursery culture and growout 73
4.5 Summary 76

5 Culture of southern flounder 82

Harry Daniels, Wade O. Watanabe, Ryan Murashige, Thomas Losordo, and Christopher Dumas

5.1 Life history and biology 82
5.2 Broodstock husbandry 83
5.3 Larviculture 88
5.4 Growout 89
5.5 Diseases 95
5.6 Marketing 95
5.7 Hatchery economics 96
5.8 Production economics 96
5.9 Summary: industry constraints and future expectations 98
5.10 Conclusions 98

6 Culture of winter flounder 101

Elizabeth A. Fairchild

6.1 Life history and biology 101
6.2 Broodstock husbandry 102
6.3 Larval culture 108
6.4 Nursery culture and growout 112
6.5 Growout 116
6.6 Summary 116

Section 2: Europe Culture

7 Turbot culture 125

Jeannine Person-Le Ruyet

7.1 Life history and biology 125
7.2 Broodstock husbandry 126
7.3 Hatchery culture 128
7.4 Nursery culture and transition to growout 132
7.5 Growout 133
7.6 Harvesting, processing, and marketing 135
7.7 Production economics 136
7.8 Summary: industry constraints and future expectations 137
Section 3: Asia and Australia Culture

8 Culture of Japanese flounder 143
Tadahisa Seikai, Kotaro Kikuchi, and Yuichiro Fujinami
8.1 Aquaculture production 143

9 Culture of olive flounder: Korean perspective 156
Sungchul C. Bai and Seunghyung Lee
9.1 Current status of olive flounder in Korea 156
9.2 Basic biology and ecology 157
9.3 Nutrition and feeding 162
9.4 Future issues and needs for development 166

10 Culture of greenback flounder 169
Piers R. Hart
10.1 Life history and biology 169
10.2 Broodstock husbandry 170
10.3 System design and requirements 170
10.4 Photothermal conditioning 170
10.5 Monitoring gonad development 170
10.6 Diet and nutrition 171
10.7 Controlled spawning 171
10.8 Collection of eggs and egg incubation 172
10.9 Larval culture 174
10.10 Hatchery protocols 174
10.11 Water quality 175
10.12 Food and feeding 177
10.13 Formulated feeds 177
10.14 Hatchery economics 178
10.15 Genetics for culture versus enhancement 178
10.16 Nursery culture and growout 179
10.17 Environmental conditions 179
10.18 Diet and nutrition 180
10.19 Health issues 180
10.20 Stocking and splitting 181
10.21 Marketing 181
10.22 Production economics 182
10.23 Summary: industry constraints and future expectations 182

11 Culture of turbot: Chinese perspective 185
Ji-Lin Lei and Xin-Fu Liu
11.1 Introduction 185
11.2 Broodstock husbandry 185
11.3 Larval culture 190
11.4 Nursery culture and growout 193
11.5 Growout 196
11.6 Summary: industry constraints and future expectations 200
Section 4: North and South America Stock Enhancement

12 Stock enhancement of southern and summer flounder 205
John M. Miller, Robert Vega, and Yoh Yamashita

12.1 Introduction 205
12.2 Previous work 206
12.3 Rationale for stocking 206
12.4 Likelihood stocking would increase production 207
12.5 Management changes to support stocking efforts 209
12.6 Potential risks and rewards of stocking 209
12.7 Issues that need resolution before stocking is implemented 210
12.8 Hatchery and stocking protocols to increase success 210
12.9 Socioeconomic aspects 211
12.10 Who should pay? 212
12.11 Conclusion 212

Section 5: Europe Stock Enhancement

13 Stock enhancement Europe: turbot Psetta maxima 219
Josianne G. Støttrup and C. R. Sparrevohn

13.1 Introduction 219
13.2 Turbot production 220
13.3 Turbot stocking 221
13.4 Rationale for turbot stocking 221
13.5 Origin of fish for stocking 224
13.6 Marking and tagging techniques 224
13.7 Release procedures 225
13.8 Choice of release site/habitat 226
13.9 Release strategy and magnitude of release 227
13.10 Postrelease mortality and conditioning 228
13.11 Cost–benefit of the releases 232
13.12 Perspectives 232
13.13 Acknowledgments 233

Section 6: Asia Stock Enhancement

14 Stock enhancement of Japanese flounder in Japan 239
Yoh Yamashita and Masato Aritaki

14.1 Background 239
14.2 Summary of catch and stock enhancement data for Japanese flounder 240
14.3 Release strategy 241
14.4 Evaluation of the effectiveness of the stock enhancement 248
14.5 Future perspectives 251
14.6 Acknowledgments 251
Section 7: Flatfish Worldwide

15 Disease diagnosis and treatment 259
 Edward J. Noga, Stephen A. Smith, and Oddvar H. Ottesen
 15.1 General signs of disease 259
 15.2 Viral diseases 260
 15.3 Bacterial diseases 265
 15.4 Parasitic and other eukaryotic diseases 268
 15.5 Noninfectious diseases 272
 15.6 Health management in flatfish aquaculture 278

16 Flatfish as model research animals: metamorphosis and sex determination 286
 Russell J. Borski, John Adam Luckenbach, and John Godwin
 16.1 Metamorphosis 287
 16.2 Sex determination 293
 16.3 Conclusion and future research directions 298
 16.4 Acknowledgments 299

17 Behavioral quality of flatfish for stock enhancement 303
 John Selden Burke and Reji Masuda
 17.1 Behavioral quality and the hatchery environment 304
 17.2 Tactics for reducing the impact of behavioral deficits 307
 17.3 Life history considerations 308
 17.4 Environmental enrichment 308
 17.5 Nutritional factors and foraging 312
 17.6 Predator avoidance 313
 17.7 Behavioral indicators 316
 17.8 Conclusion and recommendations 317

18 Summary and conclusions 323
 Wade O. Watanabe and Harry Daniels
 18.1 Life history and biology 323
 18.2 Broodstock husbandry 325
 18.3 Monitoring gonad development 329
 18.4 Larval culture 331
 18.5 Water quality 332
 18.6 Nursery culture 340
 18.7 Growout 343
 18.8 Harvesting, processing, and marketing 350
 18.9 Industry status 353
 18.10 Summary: industry constraints and future expectations 354

Index 358
Contributors

Masato Aritaki
National Center for Stock Enhancement
Fisheries Research Agency
Sakiyama Miyako, Iwate
Japan

Sungchul C. Bai
Department of Aquaculture/Feeds and Foods Nutrition Research Center (FFNRC)
Pukyong Nat’l University
Busan, Republic of Korea

David Bengtson
Department of Fisheries, Animal and Veterinary Science
University of Rhode Island
Kingston, RI

Russell J. Borski
Department of Biology
North Carolina State University
Raleigh, NC

Nick Brown
Center for Cooperative Aquaculture Research
University of Maine
Franklin, ME

John Selden Burke
Center for Coastal Fisheries and Habitat Research
National Oceanic and Atmospheric Administration
Beaflort, NC

Douglas Conklin
Department of Animal Science
UC Davis
Davis, CA
Harry Daniels
Department of Biology
North Carolina State University
Raleigh, NC

Christopher Dumas
University of North Carolina Wilmington
Wilmington, NC

Elizabeth A. Fairchild
Department of Zoology
University of New Hampshire
Durham, NH

Yuichiro Fujinami
Miyako Station
National Center for Stock Enhancement
Fisheries Research Agency
Sakiyama, Miyako, Iwate
Japan

John Godwin
Department of Biology
North Carolina State University
Raleigh, NC

Piers R. Hart
Lewes, East Sussex, BN

Kotaro Kikuchi
Biological Environment Sector
Environmental Science Research Laboratory
CRIEPI
Tokyo, Japan

Seunghyung Lee
Department of Fisheries Biology
Pukyong National University
Daeyeon dong, Namgu
Busan, Republic of Korea

Ji-Lin Lei
Yellow Sea Fisheries Research Institute
Chinese Academy of Fishery Sciences
Qingdao, Shandong
People’s Republic of China
Contributors

Xin-Fu Liu
Yellow Sea Fisheries Research Institute
Chinese Academy of Fishery Sciences
Qingdao, Shandong
People’s Republic of China

Thomas Losordo
Department of Biological and Agricultural Engineering
North Carolina State University
Raleigh, NC

John Adam Luckenbach
School of Aquatic and Fishery Sciences
University of Washington
Seattle, Washington, DC

Reji Masuda
Maizuru Fisheries Research Station
Kyoto University
Nagahama, Maizuru
Kyoto, Japan

John M. Miller
Department of Biology
North Carolina State University
Raleigh, NC

Ryan Murashige
Castle International
Honolulu, HI

George Nardi
GreatBay Aquaculture
Portsmouth, NH

Edward J. Noga
Department of Clinical Sciences
College of Veterinary Medicine
North Carolina State University
Raleigh, NC

Oddvar H. Ottesen
Bodø University College
Department of Fisheries and Natural Sciences
Bodø, Norway
Contributors

Raul Piedrahita
Department of Agricultural Engineering
UC Davis
Davis, CA

Jeanine Person-Le Ruyet
Unité Mixte Nutrition, Aquaculture, Génomique
Laboratoire Adaptation Reproduction Nutrition des Poissons,
IFREMER Centre de Brest
Plouzané, France

Tadahisa Seikai
Fukui Prefectural University
Obama City
Obama, Fukui, Japan

Alfonso Silva
Departamento de Acuacultura
Universidad Catolica del Norte
Casilla, Coquimbo, Chile

Stephen A. Smith
Department of Biomedical Sciences and Pathobiology
Virginia-Maryland Regional College of Veterinary Medicine
Virginia Tech University
Blacksburg, VA

C. R. Sparrevohn
Section for Coastal Ecology
National Institute of Aquatic Resources
Technical University of Denmark,
Charlottenlund Castle
Charlottenlund
Denmark

Josianne G. Stottrup
Technical University of Denmark
National Institute of Aquatic Research (DTU Aqua)
Charlottenlund Castle
Charlottenlund, Denmark

Robert Vega
Texas Parks and Wildlife Marine Development Center
Corpus Christi, TX