Animal Manure Recycling
Animal Manure Recycling
Treatment and Management

Edited by

SVEN G. SOMMER
Institute of Chemical Engineering, Biotechnology and Environmental Technology,
University of Southern Denmark, Denmark

MORTEN L. CHRISTENSEN
Department of Biotechnology, Chemistry and Environmental Engineering,
Aalborg University, Denmark

THOMAS SCHMIDT
Technology Transfer Office, Aarhus University, Denmark

LARS S. JENSEN
Department of Plant and Environmental Sciences, University of Copenhagen,
Denmark

WILEY
Contents

List of Contributors xiii
Preface xv
Acknowledgements xvii

1 Animal Manure – From Waste to Raw Materials and Goods 1
Sven G. Sommer
References 4

2 Animal Production and Animal Manure Management 5
Sven G. Sommer and Morten L. Christensen
2.1 Introduction 5
2.2 Housing, Feedlots and Exercise Areas 7
2.2.1 Cattle 7
2.2.2 Pigs 11
2.2.3 Poultry 12
2.2.4 Integrated Production Systems 14
2.3 Management of Manure 15
2.3.1 Deep Litter Management 15
2.3.2 Slurry Management 16
2.3.3 Separation of Slurry 17
2.4 Systems Analysis Method for Assessing Mass Flows 18
2.4.1 Mass Balance and Process Specifications 19
2.5 Summary 23
References 23

3 Regulations on Animal Manure Management 25
Sven G. Sommer, Oene Oenema, Teruo Matsunaka and Lars S. Jensen
3.1 Introduction 25
3.2 Environmental Issues 26
3.3 Need for Government Regulations 29
3.4 Global Regulation – Multilateral Environmental Agreements 30
3.5 Regional Regulations – Exemplified with EU Directives and Regulations 31
3.5.1 EU CAP and its Reforms 31
3.5.2 EU Environmental Directives 32
3.5.3 Reducing Ammonia Emissions from Manure Management in Europe 33
3.6 National Regulations on Agricultural Pollution 34
3.6.1 United States 34
6.2 Why Must the Pathogens in Manure be Managed? 92
 6.2.1 Manure Treatment 93
 6.2.2 Expression of Pathogen Reduction 93
6.3 Manure Treatment Alternatives 95
 6.3.1 Storage 96
 6.3.2 Anaerobic Treatment 96
 6.3.3 Composting 97
6.4 Chemical Treatment 99
 6.4.1 Ammonia Treatment 99
 6.4.2 Ammonia Sanitisation at the Farm Level 102
6.5 Summary 102
References 103

7 Solid–Liquid Separation of Animal Slurry 105
 Morten L. Christensen, Knud V. Christensen and Sven G. Sommer
 7.1 Introduction 105
 7.2 Removal and Separation Efficiency 106
 7.3 In-House Separation 107
 7.4 Solid–Liquid Separation of Manure Slurry 108
 7.4.1 Sedimentation 108
 7.4.2 Centrifugation 111
 7.4.3 Drainage 113
 7.4.4 Filtration with Pressure 116
 7.4.5 User Demand on Performance of the Technology 118
 7.5 Pre-Treatment: Chemical Additives 119
 7.5.1 Precipitation, Coagulation and Flocculation 119
 7.5.2 Struvite Crystallisation 122
 7.6 Post-Treatment: Separation Techniques 124
 7.6.1 Evaporation of Water and Stripping of Ammonia 124
 7.6.2 Membranes 125
 7.7 Summary 129
References 129

8 Gaseous Emissions of Ammonia and Malodorous Gases 131
 Sven G. Sommer and Anders Feilberg
 8.1 Introduction 131
 8.2 Characteristics of Ammonia and Hydrogen Sulfide 132
 8.3 Processes Involved in Emission 133
 8.3.1 Liquid and Air Diffusion Processes 134
 8.3.2 Air–Water Equilibrium 136
 8.3.3 Acid–Base Equilibrium 138
 8.4 Two-Layer Transport and Release Model 141
 8.4.1 Gas or Liquid Film Controlling Transfer 144
 8.5 Assessment of Gas Release and Emission 147
 8.5.1 Calculations Using Emission Coefficients 147
 8.5.2 Gas Release and Chemical Equilibrium 148
Contents

8.5.3 Effects of Air Turbulence and Surface Component Concentration on Emissions 149
8.6 Summary 150
References 151

9 Ammonia and Malodorous Gases: Sources and Abatement Technologies 153
Anders Feilberg and Sven G. Sommer
9.1 Introduction 153
9.2 Measurement Methods 154
\hspace{0.5cm} 9.2.1 Odour Measurement 155
\hspace{0.5cm} 9.2.2 Relationships Between Odour and Odorants 156
9.3 Ammonia Emissions 157
\hspace{0.5cm} 9.3.1 Pig and Cattle Houses – Slatted Floor and Slurry Pits 157
\hspace{0.5cm} 9.3.2 Pig and Cattle Houses – Solid Floor and Deep Litter 159
\hspace{0.5cm} 9.3.3 Poultry Houses 159
\hspace{0.5cm} 9.3.4 Ammonia Emissions from Manure Storage 161
\hspace{0.5cm} 9.3.5 Field-Applied Manure 162
9.4 Odour Emissions 164
\hspace{0.5cm} 9.4.1 Livestock Buildings 165
\hspace{0.5cm} 9.4.2 Volatile Organic Compounds and Hydrogen Sulphide Emissions from Livestock Production 166
9.5 Technologies and Additives to Reduce NH₃ and Odour Emissions 167
\hspace{0.5cm} 9.5.1 Air Treatment Techniques 167
\hspace{0.5cm} 9.5.2 Aeration 170
\hspace{0.5cm} 9.5.3 Additives 171
9.6 Summary 172
References 173

10 Greenhouse Gas Emissions from Animal Manures and Technologies for Their Reduction 177
Sven G. Sommer, Tim J. Clough, David Chadwick and Søren O. Petersen
10.1 Introduction 177
10.2 Processes of Methane and Nitrous Oxide Production 179
10.3 Methane Production from Manure 180
\hspace{0.5cm} 10.3.1 Effect of Temperature 181
\hspace{0.5cm} 10.3.2 Manure Storage Methods 181
\hspace{0.5cm} 10.3.3 Field-Applied Manure 182
10.4 Nitrous Oxide Production from Manure 183
\hspace{0.5cm} 10.4.1 Stored Manure 183
\hspace{0.5cm} 10.4.2 Field-Applied Manure 185
10.5 Reduction in Greenhouse Gas Emissions 186
\hspace{0.5cm} 10.5.1 Reduced Inoculum 188
\hspace{0.5cm} 10.5.2 Mitigation Technologies and Management 188
\hspace{0.5cm} 10.5.3 Reducing Volatile Solids and Nitrogen 188
\hspace{0.5cm} 10.5.4 Additives 189
\hspace{0.5cm} 10.5.5 Covers 190
\hspace{0.5cm} 10.5.6 Whole System Analysis of Technologies to Reduce Greenhouse Gases 190
11 Nutrient Leaching and Runoff from Land Application of Animal Manure and Measures for Reduction

Peter Sørensen and Lars S. Jensen

11.1 Introduction
11.2 Leaching and Runoff of Manure Nitrogen
 11.2.1 Leaching of Manure Nitrogen in the First Year after Application and Methods for Reducing the Risk
 11.2.2 Long-Term Leaching of Manure Nitrogen
 11.2.3 Nitrogen Losses via Runoff and Strategies for Reducing the Risk
11.3 Leaching and Runoff of Manure Phosphorus
 11.3.1 Leaching of Manure Phosphorus
 11.3.2 Phosphorus Losses via Runoff and Strategies for Reducing the Risk
11.4 Leaching and Runoff of Potassium
11.5 Summary
References

12 Technologies and Logistics for Handling, Transport and Distribution of Animal Manures

Claus A.G. Sørensen, Sven G. Sommer, Dionysis Bochtis and Alan Rotz

12.1 Introduction
12.2 Overview of Manure Systems
12.3 Animal Manure Characteristics
12.4 Removal from Animal Houses
 12.4.1 Solid Manure
 12.4.2 Liquid Manure and Slurry
12.5 Manure Storage
 12.5.1 Solid Manure Stores
 12.5.2 Liquid Manure Stores
 12.5.3 Stirring – Homogenising Liquid Manure
12.6 Transport of Manure
 12.6.1 Liquid Manure Transport by Gravity
 12.6.2 Transport of Slurry by Pumping
 12.6.3 Tanker Transport
12.7 Application of Manure in the Field
 12.7.1 Solid Manure Application
 12.7.2 Liquid Manure Application
12.8 Manure Operations Management
 12.8.1 Emptying the Animal House
 12.8.2 Transport of Manure
 12.8.3 Application in the Field
12.9 Farm Scenarios
12.10 Summary
References
List of Contributors

Morten Birkved, Department of Management Engineering, Technical University of Denmark, Denmark

Dionysis Bochtis, Department of Engineering, Aarhus University, Denmark

Sander Bruun, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark

David Chadwick, School of Environment, Natural Resources & Geography, Bangor University, Environment Centre for Wales, UK

Knud V. Christensen, Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark

Morten L. Christensen, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark

Tim J. Clough, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand

Anders Feilberg, Department of Engineering, Aarhus University, Denmark

Lars S. Jensen, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark

James J. Leahy, Department of Chemical and Environmental Sciences, University of Limerick, Ireland

Teruo Matsunaka, Faculty of Dairy Science, Rakuno Gakuen University, Japan

Oene Oenema, Environmental Sciences, Wageningen University, Netherlands

Søren O. Petersen, Department of Agroecology, Aarhus University, Denmark

Alan Rotz, USDA-ARS Pasture Systems and Watershed Management Research Unit, USA

Thomas Schmidt, Technology Transfer Office, Aarhus University, Denmark

Sven G. Sommer, Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark

Claus A.G. Sørensen, Department of Engineering, Aarhus University, Denmark

Peter Sørensen, Department of Agroecology, Aarhus University, Denmark

Marieke ten Hoeve, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark

Björn Vinnerás, Department of Energy and Technology, Swedish University of Agricultural Sciences; National Veterinary Institute, Sweden

Alastair J. Ward, Department of Engineering, Aarhus University, Denmark