An in-depth analysis of machine vibration in rotating machinery

Whether it’s a compressor on an offshore platform, a turbocharger in a truck or automobile, or a turbine in a jet airplane, rotating machinery is the driving force behind almost anything that produces or uses energy. Counted on daily to perform any number of vital societal tasks, turbomachinery uses high rotational speeds to produce amazing amounts of power efficiently. The key to increasing its longevity, efficiency, and reliability lies in the examination of rotor vibration and bearing dynamics, a field called rotordynamics.

A valuable textbook for beginners as well as a handy reference for experts, Machinery Vibration and Rotordynamics is teeming with rich technical detail and real-world examples geared toward the study of machine vibration. A logical progression of information covers essential fundamentals, in-depth case studies, and the latest analytical tools used for predicting and preventing damage in rotating machinery. Machinery Vibration and Rotordynamics:

• Combines rotordynamics with the applications of machinery vibration in a single volume
• Includes case studies of vibration problems in several different types of machines as well as computer simulation models used in industry
• Contains fundamental physical phenomena, mathematical and computational aspects, practical hardware considerations, troubleshooting, and instrumentation and measurement techniques

For students interested in entering this highly specialized field of study, as well as professionals seeking to expand their knowledge base, Machinery Vibration and Rotordynamics will serve as the one book they will come to rely upon consistently.

Dr. JOHN M. VANCE was professor of mechanical engineering at Texas A&M University, retiring in 2007. He received his PhD (1967) degree from The University of Texas at Austin. His book Rotordynamics of Turbomachinery (Wiley) has sold more than 3,000 copies and is used by turbomachinery engineers around the world. He is an inventor on several patents relating to rotating machinery and vibration reduction. His patented TAMSEAL has been retrofitted to solve vibration problems in a number of high-pressure industrial compressors. He is an ASME Fellow and a registered professional engineer in the state of Texas.

Dr. FOUAD Y. ZEIDAN is the President of KMC, Inc., and Bearings Plus, Inc., two companies specializing in the supply of high-performance bearings, flexible couplings, and seals. Dr. Zeidan holds nine U.S. patents for integral squeeze film dampers and high-performance journal and thrust bearings. He has published more than thirty technical papers and articles on various turbomachinery topics and has been lecturing at the Annual Machinery Vibrations and Rotordynamics short course since 1991. Dr. Zeidan holds a BS, MS, and PhD degrees in mechanical engineering from Texas A&M University.

BRIAN T. MURPHY, PhD, PE, is a senior research scientist with the Center for Electromechanics at The University of Texas at Austin. He is also president of RMA, Inc., which develops and markets the Xlrotor suite of rotordynamic analysis software used worldwide by industry and academia. Dr. Murphy is the creator of the polynomial transfer matrix method, which is the fastest known method of performing rotordynamic calculations. He has authored numerous technical papers on rotordynamics and machinery vibration, and is also caretaker of the Web site www.rotordynamics.org.

Cover photo courtesy of Sulzer Turbo Services showing technicians working on a compressor rotor.
MACHINERY VIBRATION AND ROTORDYNAMICS
The first author gratefully dedicates his part in this book to his loving wife Louise, who made the book possible by her unselfish support of the task and devotion to her husband while it was being written.

John M. Vance
CONTENTS

PREFACE xiii

1 Fundamentals of Machine Vibration and Classical Solutions 1

The Main Sources of Vibration in Machinery / 1
The Single Degree of Freedom (SDOF) Model / 4
Using Simple Models for Analysis and Diagnostics / 6
Six Techniques for Solving Vibration Problems with Forced Excitation / 13
Some Examples with Forced Excitation / 15
Illustrative Example 1 / 15
Illustrative Example 2 / 17
Illustrative Example 3 / 20
Illustrative Example 4 / 24
Some Observations about Modeling / 27
Unstable Vibration / 28
References / 30
Exercises / 30

2 Torsional Vibration 35

Torsional Vibration Indicators / 36
Objectives of Torsional Vibration Analysis / 37
Simplified Models / 38
Computer Models / 45
Kinetic Energy Expression / 46
Potential Energy / 46
Torsional Vibration Measurement / 51
French’s Comparison Experiments / 53
Strain Gages / 53
Carrier Signal Transducers / 54
Frequency-modulated Systems / 55
Amplitude-modulated Systems / 56
Frequency Analysis and the Sideband System / 57
French’s Test Procedure and Results / 59
A Special Tape for Optical Transducers / 61
Time-interval Measurement Systems / 62
 Results from Toram’s Method / 65
 Results from the Barrios/Darlow Method / 67
References / 68
Exercises / 69

3 Introduction to Rotordynamics Analysis 71
Objectives of Rotordynamics Analysis / 72
The Spring–Mass Model / 74
Synchronous and Nonsynchronous Whirl / 77
Analysis of the Jeffcott Rotor / 78
 Polar Coordinates / 79
 Cartesian Coordinates / 80
 Physical Significance of the Solutions / 81
 Three Ways to Reduce Synchronous Whirl Amplitudes / 82
Some Damping Definitions / 83
The “Gravity Critical” / 83
Critical Speed Definitions / 84
Effect of Flexible (Soft) Supports / 84
Rotordynamic Effects of the Force Coefficients—A
 Summary / 90
 The Direct Coefficients / 90
 The Cross-coupled Coefficients / 91
Rotordynamic Instability / 91
Effect of Cross-Coupled Stiffness on Unbalance Response / 99
Added Complexities / 100
Gyroscopic Effects / 101
Effect of Support Asymmetry on Synchronous Whirl / 107
False Instabilities / 110
4 Computer Simulations of Rotordynamics

Different Types of Models / 119
Bearing and Seal Matrices / 126
Torsional and Axial Models / 127
Different Types of Analyses / 128
Eigenanalysis / 129
Linear Forced Response (LFR) / 133
Transient Response / 134
Shaft Modeling Recommendations / 135
 How Many Elements / 135
 45-Degree Rule / 137
 Interference Fits / 138
 Laminations / 139
 Trunnions / 140
 Impeller Inertias via CAD Software / 140
 Stations for Added Weights / 142
 Rap Test Verification of Models / 143
 Stations for Bearings and Seals / 143
 Flexible Couplings / 144
Example Simulations / 146
 Damped Natural Frequency Map (NDF) / 147
 Modal Damping Map / 149
 Root Locus Map / 151
 Undamped Critical Speed Map / 151
 Mode Shapes / 157
 Bode/Polar Response Plot / 160
 Orbit Response Plot / 163
 Bearing Load Response Plot / 164
 Operating Deflected Shape (ODS) / 165
 Housing Vibration (ips and g’s) / 168
References / 168
5 **Bearings and Their Effect on Rotordynamics**
Fluid Film Bearings / 171
Fixed-geometry Sleeve Bearings / 174
Variable-geometry Tilting Pad Bearings / 185
Fluid Film Bearing Dynamic Coefficients and Methods of Obtaining Them / 190
Load Between Pivots Versus Load on Pivot / 195
Influence of Preload on the Dynamic Coefficients in Tilt Pad Bearings / 201
Influence of the Bearing Length or Pad Length / 203
Influence of the Pivot Offset / 204
Influence of the Number of Pads / 205
Ball and Rolling Element Bearings / 208
Case Study: Bearing Support Design for a Rocket Engine Turbopump / 209

 Ball Bearing Stiffness Measurements / 213
 Wire Mesh Damper Experiments and Computer Simulations / 214
Squeeze Film Dampers / 216
 Squeeze Film Damper without a Centering Spring / 217
 O-ring Supported Dampers / 220
 Squirrel Cage Supported Dampers / 223
 Integral Squeeze Film Dampers / 224
 Squeeze Film Damper Rotordynamic Force Coefficients / 225
Applications of Squeeze Film Dampers / 226
 Optimization for Improving Stability in a Centrifugal Process Compressor / 226
 Using Dampers to Improve the Synchronous Response / 232
 Using the Damper to Shift a Critical Speed or a Resonance / 236
Insights into the Rotor–Bearing Dynamic Interaction with Soft/Stiff Bearing Supports / 238
Influence on Natural Frequencies with Soft/Stiff Bearing Supports / 240
Effects of Mass Distribution on the Critical Speeds with Soft/Stiff Bearing Supports / 243
Influence of Overhung Mass on Natural Frequencies with Soft/Stiff Supports / 252
Influence of Gyroscopic Moments on Natural Frequencies with Soft/Stiff Bearing Supports / 255
References / 264
Exercises / 267
Appendix: Shaft With No Added Weight / 269

6 Fluid Seals and Their Effect on Rotordynamics 271

Function and Classification of Seals / 271
 Plain Smooth Seals / 274
 Floating Ring Seals / 276
 Conventional Gas Labyrinth Seals / 277
 Pocket Damper Seals / 283
 Honeycomb Seals / 285
 Hole-pattern Seals / 287
 Brush Seals / 289
Understanding and Modeling Damper Seal Force Coefficients / 291
 Alford’s Hypothesis of Labyrinth Seal Damping / 292
 Cross-coupled Stiffness Measurements / 295
Invention of the Pocket Damper Seal / 295
Pocket Damper Seal Theory / 299
Rotordynamic Testing of Pocket Damper Seals / 300
Impedance Measurements of Pocket Damper Seal Force Coefficients (Stiffness and Damping) and Leakage at Low Pressures / 301
The Fully Partitioned PDS Design / 304
Effects of Negative Stiffness / 310
Frequency Dependence of Damper Seals / 313
Laboratory Measurements of Stiffness and Damping from Pocket Damper Seals at High Pressures / 317
 The Conventional Design / 317
 The Fully Partitioned Design / 319
Field Experience with Pocket Damper Seals / 325
 Two Back-to-Back Compressor Applications / 325
Case 1 / 325
Case 2 / 328
A Fully Partitioned Application / 332
Designing for Desired Force Coefficient Characteristics / 336
The Conventional PDS Design / 337
The Fully Partitioned Pocket Damper Seal / 340
Leakage Considerations / 343
Some Comparisons of Different Types of Annular Gas Seals / 347
References / 348

7 History of Machinery Rotordynamics 353

The Foundation Years, 1869–1941 / 354
Shaft Dynamics / 355
Bearings / 360
Refining and Expanding the Rotodynamic Model, 1942–1963 / 363
Multistage Compressors and Turbines, Rocket Engine Turbopumps, and Damper Seals, 1964–Present / 368
Stability Problems with Multistage Centrifugal Compressors / 370
Kaybob, 1971–72 / 370
Ekofisk, 1974–75 / 373
Subsequent Developments / 381
New Frontiers of Speed and Power Density with Rocket Engine Turbopumps / 382
The Space Shuttle Main Engine (SSME) High-pressure Fuel Turbopump (HPFTP)
Rotodynamic Instability Problem / 382
Noncontacting Damper Seals / 385
Shaft Differential Heating (The Morton Effect) / 386
References / 388

INDEX 393
This book follows the first author’s book *Rotordynamics of Turbomachinery* in its practical approach and style. Much of the material in that book has been updated and extended with new information, new examples, and a few corrections that reflect what has been learned since then. Of particular interest and significance are the new chapters (4, 5, and 6) on bearings, seals, and computer modeling contributed by the co-authors Dr. Fouad Zeidan and Dr. Brian Murphy. Dr. Zeidan is the president of two companies that design and manufacture high performance bearings and seals. These products often require the design and modeling of the complete rotor-bearing system to ensure reliable operation and compatibility. Dr. Murphy is the author of XLRotor™, one of the most widely used computer programs for rotordynamic analysis. Chapters 1 and 7 are also completely new. Chapter 1 describes the classical analytical techniques used by engineers for troubleshooting vibration problems. Chapter 7 gives a history of the most important rotordynamics analysis and experiments since 1869.

The authors have noted (with some surprise) for many years that the subject material of this book is not taught in most engineering colleges, even though rotating machines are probably the most common application of mechanical engineering. The book is organized so that the first three or four chapters could be used as a text for a senior or graduate college elective course. These chapters have exercises at the end that can be assigned to the students, which will greatly enhance their understanding of the chapter material. The later chapters will serve the same students well after graduation as reference source material with examples of analysis and test results for real machines, bearings, and seals. But for the majority of engineers assigned to troubleshoot a rotating machine, or to design it for reliability, and having no relevant technical background, this entire book can be the substitute for the course they never had.

It is the author’s hope that this book will make a significant contribution to the improvement of rotating machines for the service of mankind in the years to come.

John M. Vance
Fouad Y. Zeidan
Brian T. Murphy