GC/MS
A Practical User’s Guide

Second Edition

MARVIN C. McMaster
GC/MS
GC/MS

A Practical User’s Guide

Second Edition

MARVIN C. McMASTER
To the memory of

Chris McMaster

my son, my illustrator,

my partner,

and my brother in Christ
CONTENTS

PREFACE xi

PART I A GC/MS PRIMER 1

1 Introduction 3
 1.1 Why Use GC/MS?, 4
 1.2 Interpretation of Fragmentation Data Versus Spectral
 Library Searching, 5
 1.3 The Gas Chromatograph/Mass Spectrometer, 6
 1.4 Systems and Costs, 15
 1.5 Competitive Analytical Systems, 17

2 Sample Preparation and Introduction 21
 2.1 Direct Sample Injection into the Mass Spectrometer, 22
 2.2 Sample Purification, 23
 2.3 Manual GC Injection, 25
 2.4 Automated GC/MS Injection, 27

3 The Gas Chromatograph 29
 3.1 The GC Oven and Temperature Control, 29
 3.2 Selecting GC Columns, 30
3.3 Separation Parameters and Resolution, 32
3.4 GC Control Variables, 34
3.5 Derivatives, 36

4 The Mass Spectrometer 37
4.1 Vacuum Pumps, 37
4.2 Interfaces and Sources, 40
4.3 Quadrupole Operation, 43
4.4 The Ion Detector, 45

5 Getting Started in GC/MS 47
5.1 Mode Selection, 47
5.2 Setting Up, 48
5.3 Mass Spectrometer Tuning and Calibration, 50
5.4 Sample Injection and Chromatographic Separation, 52
5.5 Data Collection Processing, 52

PART II A GC/MS OPTIMIZATION 57
6 Chromatographic Methods Development 59
6.1 Isothermal Operation, 60
6.2 Linear Temperature Gradients, 61
6.3 Assisted Re-Equilibration, 61
6.4 Hinge Point Gradient Modification, 62
6.5 Pressure Gradient Development, 63
6.6 Column Replacement, 64

7 Mass Spectrometer Setup and Operation 67
7.1 Mass Spectrometer Calibration with Calibration Gases, 67
7.2 Mass Axis Tuning, 69
7.3 System Tuning for Environmental Analysis, 71
7.4 Acquiring Information, 73
7.5 Data Displays and Library Searches, 75

8 Data Processing and Network Interfacing 77
8.1 Peak Identification and Integration, 77
8.2 Multi-Instrument Control, 79
8.3 Networking Connection, 80
8.4 Replacement Control and Processing Systems, 80
8.5 File Conversion and Data File Exchange, 81
8.6 Data Re-Entry and Transcription Errors, 83

9 System Maintenance and Troubleshooting 85
 9.1 Gas Chromatograph Maintenance, 85
 9.2 Mass Spectrometer Maintenance, 87
 9.3 System Electrical Grounding, 92

PART III SPECIFIC APPLICATIONS OF GC/MS 93

10 GC/MS in The Environmental Laboratory 95
 10.1 Volatile Organic Analysis: EPA Method 624, 96
 10.2 SemiVolatile Organic Analysis: EPA Method 625, 100
 10.3 EPA and State Reporting Requirements, 105

11 GC/MS in Forensics, Toxicology, and Space Science 109
 11.1 Forensic Analysis, 110
 11.2 Clinical Drug Analysis, 110
 11.3 Arson and Security Analysis, 111
 11.4 Astrochemistry, 111

12 An Introduction to Structural Interpretation 113
 12.1 History of the Sample, 115
 12.2 Elemental Composition, 116
 12.3 Search for Logical Fragmentation Intervals, 118

13 Ion Trap GC/MS Systems 119
 13.1 Ion Trap Components, 120
 13.2 Ion Trap Operation, 120
 13.3 The Linear Ion Trap Analyzer, 124
 13.4 Ion Traps in the Environmental Laboratory, 125
 13.5 Chemical Ionization in the Ion Trap, 125
 13.6 Ion Trap GC/MS/MS, 125

14 Other GC/MS Systems 127
 14.1 Sequential Mass Spectrometry (Triple-Quadrupole or Tandem GC/MS), 128
 14.2 Magnetic Sector Systems, 130
14.3 Laser Time-of-Flight (GC/TOF-MS) GC/MS Systems, 132
14.4 Fourier Transform (GC/FT-MS) GC/MS Systems, 133

15 An Introduction to LC/MS 137
15.1 Liquid Interfacing into the Mass Spectrometer, 138
15.2 Electrospray and Nano-Spray LC/MS, 139
15.3 Ion Spray LC/MS, 140
15.4 LC/MS/MS, 142
15.5 LC/MS Versus GC/MS, 142

16 Innovation in GC/MS 145
16.1 Microfludics in GC/MS, 146
16.2 Resistance Column Heating, 147
16.3 Portable Gas Supply, 147
16.4 Portable GC/MS Systems, 147
16.5 New Column Technology, 148

Appendix A GC/MS Frequently Asked Questions 151
A.1 GC FAQs, 151
A.2 Column FAQs, 153
A.3 MS FAQs, 153
A.4 GC/MS FAQs, 155

Appendix B GC/MS Troubleshooting Quick Reference 159
B.1 GC Injector Problems, 159
B.2 GC Column Problems, 160
B.3 MS Vacuum and Power Problems, 162
B.4 MS Source and Calibration Problems, 163
B.5 MS Sensitivity and Detector Problems, 164

Appendix C Sources of GC/MS Background Contamination 165

Appendix D A Glossary of GC/MS Terms 167

Appendix E GC/MS Selected Reading List 173
E.1 Journals, 173
E.2 Books, 173

INDEX 175
This book arose out of the need for a textbook for an extension course I teach at the University of Missouri-St. Louis. I had been searching for a practical guide for using and maintaining a GC/MS System to help my students drawn from university and company laboratories in our area. I have sold and supported HPLC, GC/MS, and other analytical systems for a number of years, so the course material and slides were created from my notes and experiences. I wrote the text while my son, Christopher, translated my drawings into the illustrations in this book before he pass away from the ravages of Muscular Dystrophy eight years ago.

This second addition has been updated with information on new advances in gas chromatography and mass spectrometry. This handbook is presented in sections because I believe it is easier to learn this way.

Part I presents a comparative look at gas chromatography/mass spectrometry (GC/MS) and competitive instrumentation. Then an overview of the components of a generic GC/MS system is provided. Finally, I discuss how to set up a system and perform an analysis run that provides the information you need.

After obtaining some hands-on experience, Part II on optimization provides information on tuning and calibration of the mass spectrometer, cleaning, troubleshooting problems, processing information, and interfacing to other analytical and data systems; that is, getting the whole system up and running, keeping it up, and getting useful information.
Part III provides information on the use of GC/MS in research, environmental, and toxicology laboratories, as well as more esoteric applications in space science and hazardous materials detection in the field. GC/MS has become the gold standard for definitive chemical analysis. Although quadrupole mass spectrometers predominately are used in commercial laboratories, there is a growing use of ion trap, time-of-flight, and hybrid MS/MS systems and these are discussed briefly. Magnetic sector systems, which dominated the early mass spectrometry growth, are making a resurgence along with Fourier transform GC/MS in accurate mass determination required for molecular formula and structure reporting in chemical publication, and these are discussed next.

As I taught courses I found myself moving from slide projectors to overhead projection of slides from Microsoft PowerPoint presentations. I decided to include a CD in the book with a Microsoft PowerPoint slide presentation as well as tables, FAQs, etc. so a lecturer would not have to reinvent the wheel and the student could slide the CD in a computer and self-study the material. To assist in making this a self-learning tool, I went back and carefully annotated each slide.

I hope you will enjoy this book and find it as useful a reference tool for your laboratory and classroom as I have.

Marvin C. McMaster

Florissant, Missouri
October 2007
PART I
A GC/MS PRIMER