3G, 4G AND BEYOND—BRINGING NETWORKS, DEVICES AND THE WEB TOGETHER
3G, 4G AND BEYOND–BRINGING NETWORKS, DEVICES AND THE WEB TOGETHER

Second Edition

Martin Sauter
WirelessMoves, Germany
Contents

Preface xi

1 Evolution from 2G over 3G to 4G 1
 1.1 First Half of the 1990s — Voice-Centric Communication 1
 1.2 Between 1995 and 2000: The Rise of Mobility and the Internet 1
 1.3 Between 2000 and 2005: Dot Com Burst, Web 2.0, Mobile Internet 2
 1.4 Between 2005 and 2010: Global Coverage, Fixed Line VoIP, and Mobile Broadband 4
 1.5 2010 and Beyond 5
 1.6 All over IP in Mobile — The Biggest Challenge 6
 1.7 Summary 6

2 Beyond 3G Network Architectures 9
 2.1 Overview 9
 2.2 UMTS, HSPA, and HSPA+ 10
 2.2.1 Introduction 10
 2.2.2 Network Architecture 10
 2.2.3 Air Interface and Radio Network 19
 2.2.4 HSPA (HSDPA and HSUPA) 28
 2.2.5 HSPA+ and other Improvements: Competition for LTE 34
 2.2.6 Competition for LTE in 5 MHz 43
 2.3 LTE 43
 2.3.1 Introduction 43
 2.3.2 Network Architecture 44
 2.3.3 Air Interface and Radio Network 49
 2.3.4 Basic Procedures 64
 2.3.5 Summary and Comparison with HSPA 67
 2.3.6 LTE-Advanced 68
 2.4 802.11 Wi-Fi 74
 2.4.1 Introduction 74
 2.4.2 Network Architecture 76
 2.4.3 The Air Interface — From 802.11b to 802.11n 78
 2.4.4 Air Interface and Resource Management 83
2.4.5 Basic Procedures 86
2.4.6 Wi-Fi Security 87
2.4.7 Quality of Service: 802.11e 89
2.4.8 Gigabit Speeds with 802.11ac and 802.11ad 90
2.4.9 Summary 91

3 Network Capacity and Usage Scenarios 95
3.1 Usage in Developed Markets and Emerging Economies 95
3.2 How to Control Mobile Usage 96
 3.2.1 Per Minute Charging 97
 3.2.2 Volume Charging 97
 3.2.3 Split Charging 97
 3.2.4 Small Screen Flat Rates 97
 3.2.5 Strategies to Inform Users when their Subscribed Data Volume is Used Up 98
 3.2.6 Mobile Internet Access and Prepaid 98
3.3 Measuring Mobile Usage from a Financial Point of View 99
3.4 Cell Capacity in Downlink 100
3.5 Current and Future Frequency Bands for Cellular Wireless 105
3.6 Cell Capacity in Uplink 106
3.7 Per-User Throughput in Downlink 109
3.8 Per-User Throughput in Uplink 114
3.9 Traffic Estimation Per User 116
3.10 Overall Wireless Network Capacity 117
3.11 Network Capacity for Train Routes, Highways, and Remote Areas 124
3.12 When will GSM be Switched Off? 125
3.13 Cellular Network VoIP Capacity 127
3.14 Wi-Fi VoIP Capacity 130
3.15 Wi-Fi and Interference 132
3.16 Wi-Fi Capacity in Combination with DSL, Cable, and Fiber 134
3.17 Backhaul for Wireless Networks 138
3.18 A Hybrid Cellular/Wi-Fi Network Today and in the Future 143

4 Voice over Wireless 149
4.1 Circuit-Switched Mobile Voice Telephony 150
 4.1.1 Circuit Switching 150
 4.1.2 A Voice-Optimized Radio Network 151
 4.1.3 The Pros of Circuit Switching 151
 4.1.4 The Bearer Independent Core Network Architecture 151
4.2 Packet-Switched Voice Telephony 153
 4.2.1 Network and Applications are Separate in Packet-Switched Networks 153
 4.2.2 Wireless Network Architecture for Transporting IP Packets 154
 4.2.3 Benefits of Migrating Voice Telephony to IP 155
 4.2.4 Voice Telephony Evolution and Service Integration 155
 4.2.5 Voice Telephony over IP: The End of the Operator Monopoly 156
5.1.3 Changing Worlds: Android on x86, Windows on ARM 245
5.1.4 From Hardware to Software 246

5.2 The System Architecture for Voice-Optimized Devices 246
5.3 The System Architecture for Multimedia Devices 248

5.4 Mobile Graphics Acceleration 253
5.4.1 2D Graphics 253
5.4.2 3D Graphics 254

5.5 Hardware Evolution 256
5.5.1 Chipset 257
5.5.2 Process Shrinking 259
5.5.3 Displays 260
5.5.4 Batteries 261
5.5.5 Camera and Optics 261
5.5.6 Global Positioning, Compass, 3D Orientation 263
5.5.7 Wi-Fi 265
5.5.8 Bluetooth 267
5.5.9 NFC, RFID, and Mobile Payment 268
5.5.10 Physical Keyboards 271
5.5.11 TV Receivers 272
5.5.12 TV-Out, Mobile Projectors, and DLNA 272

5.6 Multimode, Multifrequency Terminals 273
5.7 Wireless Notebook Connectivity 276
5.8 Impact of Hardware Evolution on Future Data Traffic 277
5.9 Power Consumption and User Interface as the Dividing Line in Mobile Device Evolution 279

5.10 Feature Phone Operating Systems 280
5.10.1 Java Platform Micro Edition 281
5.10.2 BREW 281

5.11 Smartphone Operating Systems 282
5.11.1 Apple iOS 282
5.11.2 Google Android 283
5.11.3 Android, Open Source, and its Positive Influence on Innovation 285
5.11.4 Other Smartphone Operating Systems 285
5.11.5 Fracturization 287

5.12 Operating System Tasks 288
5.12.1 Multitasking 288
5.12.2 Memory Management 288
5.12.3 File Systems and Storage 290
5.12.4 Input and Output 290
5.12.5 Network Support 291
5.12.6 Security 291

6 Mobile Web 2.0, Apps, and Owners 297
6.1 Overview 297
6.2 (Mobile) Web 1.0 — How Everything Started 298
6.3 Web 2.0 — Empowering the User 299
6.4 Web 2.0 from the User’s Point of View 299
 6.4.1 Blogs 300
 6.4.2 Media Sharing 300
 6.4.3 Podcasting 300
 6.4.4 Advanced Search 301
 6.4.5 User Recommendation 302
 6.4.6 Wikis — Collective Writing 302
 6.4.7 Social Networking Sites 303
 6.4.8 Web Applications 304
 6.4.9 Mashups 304
 6.4.10 Virtual Worlds 305
 6.4.11 Long-Tail Economics 305
6.5 The Ideas behind Web 2.0 306
 6.5.1 The Web as a Platform 306
 6.5.2 Harnessing Collective Intelligence 306
 6.5.3 Data is the next Intel Inside 307
 6.5.4 End of the Software Release Cycle 308
 6.5.5 Lightweight Programing Models 308
 6.5.6 Software above the Level of a Single Device 309
 6.5.7 Rich User Experience 309
6.6 Discovering the Fabrics of Web 2.0 310
 6.6.1 HTML 310
 6.6.2 AJAX 311
 6.6.3 Aggregation 314
 6.6.4 Tagging and Folksonomy 316
 6.6.5 Open Application Programing Interfaces 318
 6.6.6 Open Source 320
6.7 Mobile Web 2.0 — Evolution and Revolution of Web 2.0 321
 6.7.1 The Seven Principles of Web 2.0 in the Mobile World 322
 6.7.2 Advantages of Connected Mobile Devices 325
 6.7.3 Access to Local Resources for Web Apps 328
 6.7.4 2D Barcodes and Near Field Communication (NFC) 329
 6.7.5 Web Page Adaptation for Mobile Devices 330
6.8 (Mobile) Web 2.0 and Privacy and Security Considerations 334
 6.8.1 On-Page Cookies 334
 6.8.2 Inter-Site Cookies 336
 6.8.3 Flash Shared Objects 336
 6.8.4 Session Tracking 337
 6.8.5 HTML5 Security and Privacy Considerations 338
 6.8.6 Private Information and Personal Data in the Cloud 338
6.9 Mobile Apps 340
 6.9.1 App Stores and Ecosystem Approaches 341
6.10 Android App Programing Introduction 342
 6.10.1 The Eclipse Programing Environment 342
 6.10.2 Android and Object Oriented Programing 342
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.3 A Basic Android Program</td>
<td>344</td>
</tr>
<tr>
<td>6.11 Impact of Mobile Apps on Networks and Power Consumption</td>
<td>349</td>
</tr>
<tr>
<td>6.12 Mobile Apps Security and Privacy Considerations</td>
<td>351</td>
</tr>
<tr>
<td>6.12.1 Wi-Fi Eavesdropping</td>
<td>352</td>
</tr>
<tr>
<td>6.12.2 Access to Private Data by Apps</td>
<td>352</td>
</tr>
<tr>
<td>6.12.3 User Tracking by Apps and the Operating System</td>
<td>353</td>
</tr>
<tr>
<td>6.12.4 Third-Party Information Leakage</td>
<td>354</td>
</tr>
<tr>
<td>6.13 Summary</td>
<td>354</td>
</tr>
<tr>
<td>7 Conclusion</td>
<td>357</td>
</tr>
<tr>
<td>Index</td>
<td>361</td>
</tr>
</tbody>
</table>
In recent years, cellular voice networks have transformed into powerful packet-switched access networks for both voice communication and Internet access. Evolving Universal Mobile Telecommunication System (UMTS) networks and first Long Term Evolution (LTE) installations now deliver bandwidths of several megabits per second to individual users, and mobile access to the Internet from handheld devices and notebooks is no longer perceived as slower than a Digital Subscriber Line (DSL) or cable connection. Bandwidth and capacity demands, however, keep rising because of the increasing number of people using the networks and because of bandwidth-intensive applications such as video streaming. Thus, network manufacturers and network operators need to find ways to continuously increase the capacity and performance of their cellular networks while reducing the cost.

In the past, network evolution mainly involved designing access networks with more bandwidth and capacity. As we go beyond 3G network architectures, there is now also an accelerated evolution of core networks and, most importantly, user devices and applications. This evolution follows the trends that are already in full swing in the “fixed-line” Internet world today. Circuit-switched voice telephony is being replaced by voice over IP technologies, and Web 2.0 has empowered consumers to become creators, to communicate with their friends and to share their own information with a worldwide audience. With connected smartphones having become a mainstream phenomenon in recent years, they will have a major impact on this trend, as they are an ideal tool for creating and consuming content. The majority of mobile phones today have advanced camera and video capabilities, and together with fast wireless access technologies, it has become possible to share information with others instantly.

While all these trends are already occurring, few resources are available that describe them from a technical perspective. This book therefore aims to introduce the technology behind this evolution. Chapter 1 gives an overview of how mobile networks have evolved in the past and what trends are emerging today. Chapter 2 then takes a look at radio access technologies such as High-Speed Packet Access (HSPA+), LTE, and the evolution of the Wi-Fi standard. Despite the many enhancements next-generation radio systems will bring, bandwidth on the air interface is still the limiting factor. Chapter 3 takes a look at the performance of next-generation systems in comparison to today’s networks, shows where the limits are, and discusses how Wi-Fi can help to ensure future networks can meet the rising demand for bandwidth and integrated home networking. Voice over IP is already widely used in fixed line networks today, and “Beyond 3G” networks have enough capacity
and performance to bring about this change in the wireless world as well. Chapter 4 thus focuses on Voice over IP architectures, such as the IP Multimedia Subsystem (IMS) and the Session Initiation Protocol (SIP) and discusses the impacts of these systems on future voice and multimedia communication. Just as important as wireless networks are the mobile devices using them, and Chapter 5 gives an overview of current mobile device architectures and their evolution. Finally, mobile devices are only as useful as the applications running on them. So Chapter 6 discusses how “mobile Web 2.0” applications and native apps are changing the way we communicate today and in the future.

Since the publication of the first edition of this book, many predictions have become a reality and new challenges and opportunities have arisen. While LTE was only on the distant horizon when the first edition was published, it is a reality today, and HSPA networks have undergone significant evolution as well. New spectrum bands have been assigned and auctioned in the meantime and many network operators around the globe have since made use of them to increase the coverage and capacity of their networks. Perhaps the biggest evolution over the past five years has been on the mobile device side. Mobile operating systems dominating the market only a few years ago have almost vanished and new entrants such as Android and iOS have taken the mobile world by storm. And finally on the web and application programming side, significant advances triggered an update of this chapter as well. As a consequence, about half the content of the previous edition of this book was updated or entirely rewritten to reflect the current state of the art and to give an outlook of what is to come in the next five years.

No book is written in isolation and many of the ideas that have gone into this manuscript are the result of countless conversations over the years with people from across the industry. Specifically, I would like to thank Debby Maxwell, Prashant John, Kevin Wriston, Peter van den Broek, and John Edwards for the many insights they have provided to me over the years in their areas of expertise and for their generous help with reviewing the manuscript. A special thank you goes to Berenike for her love, her passion for life, and for inspiring me to always go one step further. And last but not least I would like to thank Mark Hammond, Susan Barclay, and Sandra Grayson of John Wiley & Sons for the invaluable advice they gave me throughout this and previous projects.
1

Evolution from 2G over 3G to 4G

In the past 20 years, fixed line and wireless telecommunication as well as the Internet have developed both very quickly and very slowly depending on how one looks at the domain. To set current and future developments into perspective, the first chapter of this book gives a short overview of major events that have shaped these three sectors in the previous two decades. While the majority of the developments described below took place in most high-tech countries, local factors, and national regulation delayed or accelerated events. Therefore, the time frame is split up into a number of periods and specific dates are only given for country-specific examples.

1.1 First Half of the 1990s — Voice-Centric Communication

Twenty years ago, in 1993, Internet access was not widespread and most users were either studying or working at universities or in a few select companies in the IT industry. At this time, whole universities were connected to the Internet with a data rate of 9.6 kbit/s. Users had computers at home but dial-up to the university network was not yet widely used. Distributed bulletin board networks such as the Fidonet [1] were in widespread use by the few people who were online then.

It can therefore be said that telecommunication 20 years ago was mainly voice-centric from a mass market point of view. An online telecom news magazine [2] gives a number of interesting figures on pricing around that time, when the telecom monopolies were still in place in most European countries. A 10-min “long-distance” call in Germany during office hours, for example, cost €3.25.

On the wireless side, first-generation analog networks had been in place for a number of years, but their use was even more expensive and mobile devices were bulky and unaffordable except for business users. In 1992, GSM networks had been launched in a number of European countries, but only few people noticed the launch of these networks.

1.2 Between 1995 and 2000: The Rise of Mobility and the Internet

Around 1998, telecom monopolies came to an end in many countries in Europe. At the time, many alternative operators were preparing themselves for the end of the monopoly and prices went down significantly in the first week and months after the new regulation...