William B. Heard

Rigid Body Mechanics

Mathematics, Physics and Applications
This Page Intentionally Left Blank
William B. Heard

Rigid Body Mechanics

Mathematics, Physics and Applications

WILEY-VCH Verlag GmbH & Co. KGaA
This book is dedicated to
Peggy
and the memory of my
Mother and Father
Contents

Preface XI

1 Rotations 1
 1.1 Rotations as Linear Operators 1
 1.1.1 Vector Algebra 1
 1.1.2 Rotation Operators on \mathbb{R}^3 7
 1.1.3 Rotations Specified by Axis and Angle 8
 1.1.4 The Cayley Transform 12
 1.1.5 Reflections 13
 1.1.6 Euler Angles 15
 1.2 Quaternions 17
 1.2.1 Quaternion Algebra 20
 1.2.2 Quaternions as Scalar–Vector Pairs 21
 1.2.3 Quaternions as Matrices 21
 1.2.4 Rotations via Unit Quaternions 23
 1.2.5 Composition of Rotations 25
 1.3 Complex Numbers 29
 1.3.1 Cayley–Klein Parameters 30
 1.3.2 Rotations and the Complex Plane 31
 1.4 Summary 35
 1.5 Exercises 37

2 Kinematics, Energy, and Momentum 39
 2.1 Rigid Body Transformation 40
 2.1.1 A Rigid Body has 6 Degrees of Freedom 40
 2.1.2 Any Rigid Body Transformation is Composed of Translation and Rotation 40
 2.1.3 The Rotation is Independent of the Reference Point 41
Contents

2.1.4 Rigid Body Transformations Form the Group SE(3) 41
2.1.5 Chasles’ Theorem 42
2.2 Angular Velocity 44
2.2.1 Angular Velocity in Euler Angles 47
2.2.2 Angular Velocity in Quaternions 49
2.2.3 Angular Velocity in Cayley–Klein Parameters 50
2.3 The Inertia Tensor 50
2.4 Angular Momentum 54
2.5 Kinetic Energy 54
2.6 Exercises 57

3 Dynamics 59
3.1 Vectorial Mechanics 61
3.1.1 Translational and Rotational Motion 61
3.1.2 Generalized Euler Equations 62
3.2 Lagrangian Mechanics 68
3.2.1 Variational Methods 68
3.2.2 Natural Systems and Connections 72
3.2.3 Poincaré’s Equations 75
3.3 Hamiltonian Mechanics 84
3.3.1 Momenta Conjugate to Euler Angles 86
3.3.2 Andoyer Variables 88
3.3.3 Brackets 92
3.4 Exercises 98

4 Constrained Systems 99
4.1 Constraints 99
4.2 Lagrange Multipliers 102
4.2.1 Using Projections to Eliminate the Multipliers 103
4.2.2 Using Reduction to Eliminate the Multipliers 104
4.2.3 Using Connections to Eliminate the Multipliers 107
4.3 Applications 108
4.3.1 Sphere Rolling on a Plane 108
4.3.2 Disc Rolling on a Plane 111
4.3.3 Two-Wheeled Robot 114
4.3.4 Free Rotation in Terms of Quaternions 116
4.4 Alternatives to Lagrange Multipliers 117
4.4.1 D’Alembert’s Principle 118
4.4.2 Equations of Udwadia and Kalaba 119
4.5 The Fiber Bundle Viewpoint 122
4.6 Exercises 127
Contents

5 Integrable Systems 129
- 5.1 Free Rotation 129
 - 5.1.1 Integrals of Motion 129
 - 5.1.2 Reduction to Quadrature 130
 - 5.1.3 Free Rotation in Terms of Andoyer Variables 136
 - 5.1.4 Poinsoin Construction and Geometric Phase 140
- 5.2 Lagrange Top 145
 - 5.2.1 Integrals of Motion and Reduction to Quadrature 145
 - 5.2.2 Motion of the Top’s Axis 147
- 5.3 The Gyrostat 148
 - 5.3.1 Bifurcation of the Phase Portrait 149
 - 5.3.2 Reduction to Quadrature 150
- 5.4 Kowalevsky Top 153
- 5.5 Liouville Tori and Lax Equations 154
 - 5.5.1 Liouville Tori 155
 - 5.5.2 Lax Equations 156
- 5.6 Exercises 159

6 Numerical Methods 161
- 6.1 Classical ODE Integrators 161
- 6.2 Symplectic ODE Integrators 168
- 6.3 Lie Group Methods 170
- 6.4 Differential–Algebraic Systems 179
- 6.5 Wobblestone Case Study 182
- 6.6 Exercises 187

7 Applications 189
- 7.1 Precession and Nutation 189
 - 7.1.1 Gravitational Attraction 190
 - 7.1.2 Precession and Nutation via Lagrangian Mechanics 192
 - 7.1.3 A Hamiltonian Formulation 195
- 7.2 Gravity Gradient Stabilization of Satellites 197
 - 7.2.1 Kinematics in Terms of Yaw-Pitch-Roll 198
 - 7.2.2 Rotation Equations for an Asymmetric Satellite 198
 - 7.2.3 Linear Stability Analysis 200
- 7.3 Motion of a Multibody: A Robot Arm 203
- 7.4 Molecular Dynamics 210
Preface

This is a textbook on rigid body mechanics written for graduate and advanced undergraduate students of science and engineering. The primary reason for writing the book was to give an account of the subject which was firmly grounded in both the classical and geometrical foundations of the subject. The book is intended to be accessible to a student who is well prepared in linear algebra and advanced calculus, who has had an introductory course in mechanics and who has a certain degree of mathematical maturity. Any mathematics needed beyond this is included in the text.

Chapter 1 deals with the rotations, the basic operation in rigid body theory. Rotations are presented in several parameterizations including axis angle, Euler angle, quaternion, and Cayley–Klein parameters. The rotations form a Lie group which underlies all of rigid body mechanics.

Chapter 2 studies rigid body motions, angular velocity, and the physical concepts of angular momentum and kinetic energy. The fundamental idea of angular velocity is straight from the Lie algebra theory. These concepts are illustrated with several examples from physics and engineering.

Chapter 3 studies rigid body dynamics in vector, Lagrangian, and Hamiltonian formulations. This chapter introduces many geometric concepts as dynamics occurs on differential manifolds and for rigid body mechanics the manifold is often a Lie group. The idea of the adjoint action is seen to be basic to the rigid body equations of motion. This chapter contains many examples from physics and engineering.

Chapter 4 considers the dynamics of constrained systems. Here Lagrange multipliers are introduced and several ways of determining or eliminating them are considered. This topic is rich in geometrical interactions and there are several examples, some standard and some not.

Chapter 5 considers the integrable problems of free rotation, Lagrange’s top, and the gyrostat. The Kowalevsky top and Lax equations are also considered. Geometrical topics include the Poinsot construction, the geometric phase, and
Liouville tori. Verification and validation are of the utmost importance in the world of scientific and engineering computing and analytical solutions are treasured. In addition to the validation service they also play an important role in developing our intuitive understanding of the subject, not to mention their intrinsic and historical worth.

The importance of numerical methods in today’s applications of mechanics cannot be overstated. Chapter 6 discusses classical numerical methods and more recent methods tailored specifically for Lie groups. This chapter includes a case study of a complicated rigid body motion, the wobblestone, which is naturally studied with numerical methods.

The final chapter, Chapter 7, applies the previous material to phenomena ranging in scale from the astronomical to the molecular. The largest scale concerns precession and nutation of the Earth. The Earth is nonspherical – an oblate spheroid to first approximation – and the axis of the Earth’s rotation is observed to move on the celestial sphere. Most of this motion is attributed to the torque exerted on the nonspherical Earth by the Moon and the Sun and rigid body dynamics explains the effect. Next we study satellite gravity gradient stabilization. If Earth’s satellites are not stabilized by some mechanism, they will tumble – as do the asteroids – and will not be useful platforms. One stabilization mechanism uses the gradient in the Earth’s gravitational field and the basics of this mechanism are explained by rigid body theory. On the same scale, but down to the Earth, we consider the motion of a multibody, a mechanical system consisting of interconnected rigid bodies. Rigid body dynamics is used to study the motion of a robot arm. At the smallest scale we examine the techniques of molecular dynamics. Physicists and chemists study properties of matter by simulating the motions of a large number of interacting molecules. At the most basic level this is a problem in quantum mechanics. However, there are properties which can be calculated by idealizing the material to be a collection of interacting rigid bodies.

Three appendices are provided on spherical trigonometry, elliptic functions and Lie groups and Lie algebras. Lie groups and Lie algebras unify the subject. Appendix C provides background on all the Lie group concepts used in the text.

Some choices made in the course of writing the book should be mentioned. The application of mechanics often boils down to making a calculation and getting the useful number. I have tried to keep calculations foremost in mind. There are no theorem–proof structures in the book. Rather observations are made and substantiated by methods which are decidedly computational. Rarely are equations put in dimensionless form because one can rely on dimensional checks to avoid algebra mistakes and misconceived physics. Of course, when it comes time to compute one is well advised to pay attention to
the scalings. Various notations are used in the text ranging from “old tensor”
to intrinsic operators independent of coordinates and the concise notations
of [1,23] which facilitate the computations. There is a glossary in Appendix D
of the notations used. Examples are set aside in italic type and end with the
symbol ♦.

William B. Heard

Alexandria, Virginia, U.S.A., 23 August 2005