This timely guide to kinase inhibitor drug discovery is the first to cover the entire drug pipeline, from target identification to compound development and clinical application. Edited by pioneers in the field, on the drug development side this ready reference discusses classical medicinal chemistry approaches as well as current chemical genomics strategies. On the clinical side, both current and future therapeutic application areas for kinase inhibitor drugs are addressed, with a strong focus on oncology drugs.

Backed by recent clinical experience with first-generation drugs in the battle against various forms of cancer, this is crucial reading for medicinal, pharmaceutical and biochemists, molecular biologists, and oncologists, as well as those working in the pharmaceutical industry.

Bert Klebl is an expert in small molecule based drug discovery. Currently, he is managing director and CSO of Lead Discovery Center GmbH, which was started by Max-Planck Innovation and the Max-Planck Society. Before, he was at CPC Biotech, Axxima Pharmaceuticals and Aventis (Hoechst Marion Roussel). A biochemist by training, he graduated from the University of Konstanz, Germany, and did post-doctoral work at the Biotechnology Research Institute in Montréal, Canada.

Gerhard Müller received his PhD in Organic Chemistry in 1992 from the Technical University of Munich, working with Horst Kessler. After two years in the Medicinal Chemistry Department of Glaxo Verona (Italy), he joined the Central Research Facility of Bayer AG in Leverkusen. From 2001 to 2003 he headed the chemistry department of Organon’s Lead Discovery Unit in Oss, Netherlands. In 2003 he was nominated CEO of Axxima Pharmaceuticals AG in Munich, and upon its acquisition through CPC Biotech AG in 2005, he became CPC’s Vice President Drug Discovery. Since 2008 he is CEO and Managing Director of ProteoFragments GmbH, specializing in fragment-based lead generation. Apart from numerous scientific articles and patents, he co-edited the “Chemogenomics in Drug Discovery” book of this series on medicinal chemistry.

Michael Hamacher studied biology at the Heinrich-Heine-Universität in Düsseldorf, Germany. Subsequent to his PhD, he joined the Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany, and became Head of Administration of the MPC, responsible for the implementation and the strategic planning of the Human Brain Proteome Project under the roof of the Human Proteome Organization (HUPPO IPP) among others. In 2008, he moved to the Lead Discovery Center GmbH, Dortmund, Germany, for the same position, focusing on preparing national as well as international funding applications, on project management, budgeting as well as human resources. He applied and implemented numerous projects in early pharmaceutical research.

Series Editors:
R. Mannhold, H. Kubinyi, G. Folkers
Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folkers
Editorial Board
H. Buschmann, H. Timmerman, H. van de Waterbeem, T. Wieland

Previous Volumes of this Series:

<table>
<thead>
<tr>
<th>Sotriffer, Christopher (Ed.)</th>
<th>Faller, Bernhard / Urban, Laszlo (Eds.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Screening</td>
<td>Hit and Lead Profiling</td>
</tr>
<tr>
<td>Principles, Challenges, and Practical Guidelines</td>
<td>Identification and Optimization of Drug-like Molecules</td>
</tr>
<tr>
<td>2011</td>
<td>2009</td>
</tr>
<tr>
<td>Vol. 48</td>
<td>Vol. 43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rautio, Jarkko (Ed.)</th>
<th>Sippl, Wolfgang / Jung, Manfred (Eds.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prodrugs and Targeted Delivery</td>
<td>Epigenetic Targets in Drug Discovery</td>
</tr>
<tr>
<td>Towards Better ADME Properties</td>
<td>2009</td>
</tr>
<tr>
<td>ISBN: 978-3-527-32603-7</td>
<td>Vol. 42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smit, Martine J. / Lira, Sergio A. / Leurs, Rob (Eds.)</th>
<th>Todeschini, Roberto / Consonni, Viviana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemokine Receptors as Drug Targets</td>
<td>Molecular Descriptors for Chemoinformatics</td>
</tr>
<tr>
<td>2011</td>
<td>Volume I: Alphabetical Listing / Volume II: Appendices, References</td>
</tr>
<tr>
<td>ISBN: 978-3-527-32118-6</td>
<td>2009</td>
</tr>
<tr>
<td>Vol. 46</td>
<td>ISBN: 978-3-527-31852-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ghosh, Arun K. (Ed.)</th>
<th>van de Waterbeem, Han / Testa, Bernard (Eds.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic Acid Proteases as Therapeutic Targets</td>
<td>Drug Bioavailability</td>
</tr>
<tr>
<td>2010</td>
<td>Estimation of Solubility, Permeability, Absorption and Bioavailability</td>
</tr>
<tr>
<td>ISBN: 978-3-527-31811-7</td>
<td>Second, Completely Revised Edition</td>
</tr>
<tr>
<td>Vol. 45</td>
<td>ISBN: 978-3-527-32051-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecker, Gerhard F. / Chiba, Peter (Eds.)</th>
<th>Ottow, Eckhard / Weinmann, Hilmar (Eds.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporters as Drug Carriers</td>
<td>Nuclear Receptors as Drug Targets</td>
</tr>
<tr>
<td>Structure, Function, Substrates</td>
<td>2008</td>
</tr>
<tr>
<td>2009</td>
<td>ISBN: 978-3-527-31872-8</td>
</tr>
</tbody>
</table>
Edited by
Bert Klebl, Gerhard Müller, and Michael Hamacher

Protein Kinases as Drug Targets
Series Editors

Prof. Dr. Raimund Mannhold
Molecular Drug Research Group
Heinrich-Heine-Universität
Universitätsstrasse 1
40225 Düsseldorf
Germany
mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers
Collegium Helveticum
STW/ETH Zurich
8092 Zurich
Switzerland
folkers@collegium.ethz.ch

Volume Editors

Dr. Bert Klebl
Lead Discovery Center GmbH
Emil-Figge-Straße 76 a
44227 Dortmund
Germany

Dr. Gerhard Müller
Proteros Fragments GmbH
Am Klopferspitz 19
82152 Planegg
Germany

Dr. Michael Hamacher
Lead Discovery Center GmbH
Emil-Figge-Str. 76 a
44227 Dortmund
Germany

Cover Description

ATP binding site of the Cyclin-dependent protein kinase 7 (CDK7), a member of the CDK family involved in the regulation of the cell cycle and transcription. The kinase active site is divided in sub-sites according to its interactions, varying between individual enzymes and allowing the individual design of selective inhibitors. (Photo courtesy C. McInnes)
Contents

List of Contributors XI
Preface XV
A Personal Foreword XVII

Part One Hit Finding and Profiling for Protein Kinases: Assay Development and Screening, Libraries 1

1 In Vitro Characterization of Small-Molecule Kinase Inhibitors 3
Doris Hafenbradl, Matthias Baumann, and Lars Neumann
1.1 Introduction 3
1.2 Optimization of a Biochemical Kinase Assay 4
1.2.1 Step 1: Identification of a Substrate and Controlling of the Linearity between Signal and Kinase Concentration 4
1.2.2 Step 2: Assay Wall and Optimization of the Reaction Buffer 6
1.2.3 Step 3: The Michaelis–Menten Constant K_m and the ATP Concentration 10
1.2.4 Step 4: Signal Linearity throughout the Reaction Time and Dependence on the Kinase Concentration 12
1.2.5 Step 5: Assay Validation by Measurement of the IC$_{50}$ of Reference Inhibitors 15
1.3 Measuring the Binding Affinity and Residence Time of Unusual Kinase Inhibitors 15
1.3.1 Washout Experiments 18
1.3.2 Surface Plasmon Resonance 19
1.3.3 Classical Methods with Fluorescent Probes 21
1.3.4 Preincubation of Target and Inhibitor 22
1.3.5 Reporter Displacement Assay 22
1.3.6 Implications for Drug Discovery 25
1.4 Addressing ADME Issues of Protein Kinase Inhibitors in Early Drug Discovery 26
1.4.1 Introduction 26
1.4.2 Experimental Approaches to Drug Absorption 30
1.4.2.1 Measuring Solubility 30
1.4.2.2 Measuring Lipophilicity and Ionization 30
1.4.2.3 Measuring Permeability 31
1.4.2.4 Transporter Assays Addressing P-gp Interaction 33
1.4.3 Experimental Approaches to Drug Metabolism 34
1.4.3.1 Background and Concepts 34
1.4.3.2 Measuring Metabolic Stability 37
1.4.3.3 Measuring CYP450 Inhibition 39
References 39

2 Screening for Kinase Inhibitors: From Biochemical to Cellular Assays 45
Jan Eickhoff and Axel Choidas
2.1 Introduction 45
2.1.1 Kinase Inhibitors for Dissection of Signaling Pathways 46
2.1.2 Cellular Kinase Assays for Drug Discovery Applications 46
2.2 Factors that Influence Cellular Efficacy of Kinase Inhibitors 47
2.2.1 Competition from ATP 47
2.2.2 Substrate Phosphorylation Levels 51
2.2.3 Ultrasensitivity of Kinase Signaling Cascades 51
2.2.4 Cell Permeability 52
2.2.5 Cellular Kinase Concentrations 53
2.2.6 Effects of Inhibitors Not Related to Substrate Phosphorylation 54
2.3 Assays for Measurement of Cellular Kinase Activity 55
2.3.1 Antibody-Based Detection 56
2.3.2 High-Content Screening 59
2.3.3 Use of Genetically Engineered Cell Lines 60
2.3.4 Genetically Encoded Biosensors 61
2.3.5 Label-Free Technologies 62
2.3.6 Analysis of Kinase Family Selectivity 62
2.3.7 SILAC 62
2.3.8 Affinity Chromatography with Immobilized Kinase Inhibitors 63
2.4 Outlook 63
References 64

3 Dissecting Phosphorylation Networks: The Use of Analogue-Sensitive Kinases and More Specific Kinase Inhibitors as Tools 69
Matthias Rabiller, Jeffrey R. Simard and Daniel Rauh
3.1 Introduction 69
3.2 Chemical Genetics 71
3.2.1 Engineering ASKA Ligand–Kinase Pairs 71
3.3 The Application of ASKA Technology in Molecular Biology 76
3.3.1 Identification of Kinase Substrates 76
3.3.2 Studies on Kinase Inhibition

3.3.3 Alternative Approaches to Specifically Targeting Kinases of Interest

3.4 Conclusions and Outlook

References

Part Two Medicinal Chemistry

4 Rational Drug Design of Kinase Inhibitors for Signal Transduction Therapy

György Kéri, László Örfi, and Gábor Németh

4.1 The Concept of Rational Drug Design

4.2 3D Structure-Based Drug Design

4.3 Ligand-Based Drug Design

4.3.1 Active Analogue Approach

4.3.2 3D Quantitative Structure–Activity Relationships

4.4 Target Selection and Validation

4.5 Personalized Therapy with Kinase Inhibitors

4.5.1 Target Fishing: Kinase Inhibitor-Based Affinity Chromatography

4.6 The NCL™ Technology and Extended Pharmacophore Modeling (Prediction-Oriented QSAR)

4.7 Non-ATP Binding Site-Directed or Allosteric Kinase Inhibitors

4.8 The Master Keys for Multiple Target Kinase Inhibitors

4.8.1 Application of KinaTor™ for the Second-Generation Kinase Inhibitors

4.9 Conclusions

References

5 Kinase Inhibitors in Signal Transduction Therapy

György Kéri, László Örfi, and Gábor Németh

5.1 VEGFR (Vascular Endothelial Growth Factor Receptor)

5.2 Flt3 (FMS-Like Tyrosine Kinase 3)

5.3 Bcr-Abl (Breakpoint Cluster Region–Abelson Murine Leukemia Viral Oncogene Homologue)

5.4 EGFR (Epidermal Growth Factor Receptor)

5.5 IGFR (Insulin-Like Growth Factor Receptor)

5.6 FGFR (Fibroblast Growth Factor Receptor)

5.7 PDGFR (Platelet-Derived Growth Factor Receptor)

5.8 c-Kit

5.9 Met (Mesenchymal-Epithelial Transition Factor)

5.10 Src

5.11 p38 MAPKs (Mitogen-Activated Protein Kinases)

5.12 ERK1/2

5.13 JNK (c-Jun N-Terminal Kinase, MAPK8)

5.14 PKC (Protein Kinase C)

5.15 CDKs (Cyclin-Dependent Kinases)
Part Three Application of Kinase Inhibitors to Therapeutic Indication Areas 229

8 Discovery and Design of Protein Kinase Inhibitors: Targeting the Cell cycle in Oncology 231
Mokdad Mezna, George Kontopidis, and Campbell McInnes

8.1 Protein Kinase Inhibitors in Anticancer Drug Development 231
8.2 Structure-Guided Design of Small-Molecule Inhibitors of the Cyclin-Dependent Kinases 233
8.3 Catalytic Site Inhibitors 234
8.4 ATP Site Specificity 236
8.5 Alternate Strategies for Inhibiting CDKs 239
8.6 Cyclin Groove Inhibitors (CGI) 240
8.7 Inhibition of CDK–Cyclin Association 242
8.8 Recent Developments in the Discovery and the Development of Aurora Kinase Inhibitors 242
8.9 Development of Aurora Kinase Inhibitors through Screening and Structure-Guided Design 244
8.10 Aurora Kinase Inhibitors in Clinical Trials 248
8.11 Progress in the Identification of Potent and Selective Polo-Like Kinase Inhibitors 250
8.12 Development of Small-Molecule Inhibitors of PLK1 Kinase Activity 252
8.13 Discovery of Benzthiazole PLK1 Inhibitors 254
8.14 Recent Structural Studies of the Plk1 Kinase Domain 255
8.15 Additional Small-Molecule PLK1 Inhibitors Reported 256
8.16 The Polo-Box Domain 257
8.17 Future Developments 259

References 259

9 Medicinal Chemistry Approaches for the Inhibition of the p38 MAPK Pathway 271
Stefan Laufer L, Simona Margutti, Dowinik Hauser

9.1 Introduction 271
9.2 p38 MAP Kinase Basics 271
9.3 p38 Activity and Inhibition 275
9.4 First-Generation Inhibitors 278
9.5 Pyridinyl-Imidazole Inhibitor: SB203580 278
9.6 N-Substituted Imidazole Inhibitors 282
9.7 N,N'-Diarylurea-Based Inhibitors: BIRB796 286
9.8 Structurally Diverse Clinical Candidates 288
9.9 Medicinal Chemistry Approach on VX-745-Like Compounds 297
9.10 Conclusion and Perspective for the Future 301

References 302
10 Cellular Protein Kinases as Antiviral Targets 305

Luis M. Schang

10.1 Introduction 305

10.2 Antiviral Activities of the Pharmacological Cyclin-Dependent Kinase Inhibitors 310

10.2.1 Relevant Properties of CDKs and PCIs 310

10.2.2 Antiviral Activities of PCIs 327

10.2.2.1 Antiviral Activities of PCIs against Herpesviruses 327

10.2.2.2 Antiviral Activities of PCIs against HIV 332

10.2.2.3 Antiviral Activities of PCIs against Other Viruses 335

10.2.3 PCIs Can be Used in Combination Therapies 336

10.2.4 PCIs Inhibit Viral Pathogenesis 337

10.3 Antiviral Activities of Inhibitors of Other Cellular Protein Kinases 338

10.4 Conclusion 339

References 341

11 Prospects for TB Therapeutics Targeting Mycobacterium tuberculosis Phosphosignaling Networks 349

Yossef Av-Gay and Tom Alber

11.1 Introduction 349

11.2 Rationale for Ser/Thr Protein Kinases and Protein Phosphatases as Drug Targets 350

11.3 Drug Target Validation by Genetic Inactivation 351

11.4 STPK Mechanisms, Substrates, and Functions 352

11.5 M. tuberculosis STPK Inhibitors 355

11.6 Conclusions and Prospects 359

References 359

Index 365
List of Contributors

Tom Alber
University of California
Department of Molecular and Cell Biology
374B Stanley Hall #3220
Berkeley, CA 94720-3220
USA

Yossef Av-Gay
University of British Columbia
Department of Medicine
Division of Infectious Diseases
Vancouver, British Columbia
Canada V5Z 3J5

Alexander C. Backes
Sandoz GmbH
Sandoz Development Center
Biochemiestrasse 10
6336 Langkampfen
Austria

Matthias Baumann
Lead Discovery Center GmbH
Emil-Figge-Str 76a
44227 Dortmund
Germany

Axel Choidas
Lead-Discovery Center GmbH
Emil-Figge-Straße 76a
44227 Dortmund
Germany

Jan Eickhoff
Lead-Discovery Center GmbH
Emil-Figge-Straße 76a
44227 Dortmund
Germany

Doris Hafenbradl
BioFocus AG
Gewerbestrasse 16
4123 Allschwil
Switzerland

Nicola Heron
Devices for Dignity
Sheffield Teaching Hospitals NMS Foundation Trust
Royal Hallamshire Hospital
Glossop Road Sheffield, S10 2YF
UK

György Kéri
Vichem Chemie Research Ltd.
Herman Ottó u. 15
1022 Budapest
Hungary
List of Contributors

and

Semmelweis University
Hungarian Academy of Sciences
Pathobiochemical Research Group
Túzoltó u. 37-47
1094 Budapest
Hungary

George Kontopidis
University of Thessaly
Veterinary School
Department of Biochemistry
43100 Karditsa
Greece

Stefan Laufer
Eberhard-Karls-Universität Tübingen
Pharmazeutisches Institut
Auf der Morgenstelle 8
72076 Tübingen
Germany

Campbell McInnes
South Carolina College of Pharmacy
715 Sumter St.
Columbia, SC 29208
USA

Mokdad Mezna
Beatson Institute for Cancer Research
Translational Research
Garscube Estateswitchback Road
Glasgow G61 1BD
UK

Gerhard Müller
Proteros Fragments GmbH
Fraunhoferstr. 20
82152 Martinsried
Germany

Gábor Németh
Vichem Chemie Research Ltd.
Herman Ottó u. 15
1022 Budapest
Hungary

Lars Neumann
Proteros Biostructures
Am Klopferspitz 19
82152 Martinsried
Germany

László Örfi
Vichem Chemie Research Ltd.
Herman Ottó u. 15
1022 Budapest
Hungary

and

Semmelweis University
Department of Pharmaceutical Chemistry
Högyes Endre u. 9
1092 Budapest
Hungary

Matthias Rabiller
Chemical Genomics Centre of the Max Planck Society
Otto-Hahn-Str. 15
44227 Dortmund
Germany

Daniel Rauh
Chemical Genomics Centre of the Max Planck Society
Otto-Hahn-Str. 15
44227 Dortmund
Germany
List of Contributors

Luis M. Schang
University of Alberta
Department of Biochemistry
327 Heritage Medical Research Center
Edmonton, Alberta
Canada, T6G 2S2

Jeffrey R. Simard
Chemical Genomics Centre of the Max Planck Society
Otto-Hahn-Str. 15
44227 Dortmund
Germany

Peter C. Sennhenn
Proteros Fragments GmbH
Fraunhoferstr. 20
82152 Martinsried
Germany