To Alexander Kossiakoff,

who never took “no” for an answer and refused to believe that anything was impossible. He was an extraordinary problem solver, instructor, mentor, and friend.

Samuel J. Seymour

Steven M. Biemer
CONTENTS

LIST OF ILLUSTRATIONS xiii
LIST OF TABLES xvii
PREFACE TO THE SECOND EDITION xix
PREFACE TO THE FIRST EDITION xxiii

PART I FOUNDATIONS OF SYSTEMS ENGINEERING 1

1 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS 3
 1.1 What Is Systems Engineering? 3
 1.2 Origins of Systems Engineering 5
 1.3 Examples of Systems Requiring Systems Engineering 10
 1.4 Systems Engineering as a Profession 12
 1.5 Systems Engineer Career Development Model 18
 1.6 The Power of Systems Engineering 21
 1.7 Summary 23
 Problems 25
 Further Reading 26

2 SYSTEMS ENGINEERING LANDSCAPE 27
 2.1 Systems Engineering Viewpoint 27
 2.2 Perspectives of Systems Engineering 32
 2.3 Systems Domains 34
 2.4 Systems Engineering Fields 35
 2.5 Systems Engineering Approaches 36
 2.6 Systems Engineering Activities and Products 37
 2.7 Summary 38
 Problems 39
 Further Reading 40
CONTENTS

3 STRUCTURE OF COMPLEX SYSTEMS

3.1 System Building Blocks and Interfaces ... 41
3.2 Hierarchy of Complex Systems .. 42
3.3 System Building Blocks ... 45
3.4 The System Environment ... 51
3.5 Interfaces and Interactions ... 58
3.6 Complexity in Modern Systems ... 60
3.7 Summary
 - Problems .. 64
 - Further Reading ... 67

4 THE SYSTEM DEVELOPMENT PROCESS

4.1 Systems Engineering through the System Life Cycle 69
4.2 System Life Cycle ... 70
4.3 Evolutionary Characteristics of the Development Process 82
4.4 The Systems Engineering Method ... 87
4.5 Testing throughout System Development ... 103
4.6 Summary
 - Problems .. 106
 - Further Reading ... 109

5 SYSTEMS ENGINEERING MANAGEMENT

5.1 Managing System Development and Risks 111
5.2 WBS .. 113
5.3 SEMP ... 117
5.4 Risk Management ... 120
5.5 Organization of Systems Engineering ... 128
5.6 Summary
 - Problems .. 132
 - Further Reading ... 134

PART II CONCEPT DEVELOPMENT STAGE

6 NEEDS ANALYSIS

6.1 Originating a New System ... 139
6.2 Operations Analysis .. 146
6.3 Functional Analysis .. 151
6.4 Feasibility Definition .. 153
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Trade-Off Analysis</td>
<td>282</td>
</tr>
<tr>
<td>9.6</td>
<td>Review of Probability</td>
<td>295</td>
</tr>
<tr>
<td>9.7</td>
<td>Evaluation Methods</td>
<td>299</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>312</td>
</tr>
</tbody>
</table>

PART III ENGINEERING DEVELOPMENT STAGE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>ADVANCED DEVELOPMENT</td>
<td>317</td>
</tr>
<tr>
<td>10.1</td>
<td>Reducing Program Risks</td>
<td>317</td>
</tr>
<tr>
<td>10.2</td>
<td>Requirements Analysis</td>
<td>322</td>
</tr>
<tr>
<td>10.3</td>
<td>Functional Analysis and Design</td>
<td>327</td>
</tr>
<tr>
<td>10.4</td>
<td>Prototype Development as a Risk Mitigation Technique</td>
<td>333</td>
</tr>
<tr>
<td>10.5</td>
<td>Development Testing</td>
<td>340</td>
</tr>
<tr>
<td>10.6</td>
<td>Risk Reduction</td>
<td>349</td>
</tr>
<tr>
<td>10.7</td>
<td>Summary</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>354</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>SOFTWARE SYSTEMS ENGINEERING</td>
<td>355</td>
</tr>
<tr>
<td>11.1</td>
<td>Coping with Complexity and Abstraction</td>
<td>356</td>
</tr>
<tr>
<td>11.2</td>
<td>Nature of Software Development</td>
<td>360</td>
</tr>
<tr>
<td>11.3</td>
<td>Software Development Life Cycle Models</td>
<td>365</td>
</tr>
<tr>
<td>11.4</td>
<td>Software Concept Development: Analysis and Design</td>
<td>373</td>
</tr>
<tr>
<td>11.5</td>
<td>Software Engineering Development: Coding and Unit Test</td>
<td>385</td>
</tr>
<tr>
<td>11.6</td>
<td>Software Integration and Test</td>
<td>393</td>
</tr>
<tr>
<td>11.7</td>
<td>Software Engineering Management</td>
<td>396</td>
</tr>
<tr>
<td>11.8</td>
<td>Summary</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>406</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>ENGINEERING DESIGN</td>
<td>409</td>
</tr>
<tr>
<td>12.1</td>
<td>Implementing the System Building Blocks</td>
<td>409</td>
</tr>
<tr>
<td>12.2</td>
<td>Requirements Analysis</td>
<td>414</td>
</tr>
<tr>
<td>12.3</td>
<td>Functional Analysis and Design</td>
<td>416</td>
</tr>
<tr>
<td>12.4</td>
<td>Component Design</td>
<td>419</td>
</tr>
<tr>
<td>12.5</td>
<td>Design Validation</td>
<td>432</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

1.1 Career opportunities and growth .. 14
1.2a Technical orientation phase diagram .. 16
1.2b Technical orientation population density distribution 16
1.3a Systems engineering (SE) career elements derived from quality work experiences .. 19
1.3b Components of employer development of systems engineers 19
1.4 “T” model for systems engineer career development 20
2.1a Performance versus cost .. 29
2.1b Performance/cost versus cost ... 29
2.2 The ideal missile design from the viewpoint of various specialists 31
2.3 The dimensions of design, systems engineering, and project planning and control ... 32
2.4 Systems engineering domains ... 34
2.5 Examples of systems engineering fields .. 35
2.6 Examples of systems engineering approaches 36
2.7 Life cycle systems engineering view ... 37
3.1 Knowledge domains of systems engineer and design specialist 45
3.2 Context diagram ... 53
3.3 Context diagram for an automobile ... 54
3.4 Environments of a passenger airliner .. 56
3.5 Functional interactions and physical interfaces 59
3.6 Pyramid of system hierarchy ... 63
4.1 DoD system life cycle model ... 71
4.2 System life cycle model ... 72
4.3 Principal stages in system life cycle ... 75
4.4 Concept development phases of system life cycle 76
4.5 Engineering development phases in system life cycle 78
4.6 Principal participants in a typical aerospace system development 86
4.7 DoD MIL-STD499B ... 90
4.8 IEEE-1220 systems engineering process .. 90
4.9 EIA-632 systems engineering process .. 91

xiii