Related Titles

Loupy, A., de la Hoz, A. (eds.)

Microwaves in Organic Synthesis
Third, Completely Revised and Enlarged Edition
2013
ISBN: 978-3-527-33116-1

Quinten, M.

Optical Properties of Nanoparticle Systems
Mie and Beyond
2011
ISBN: 978-3-527-41043-9

Gruttadauria, M., Giacalone, F. (eds.)

Catalytic Methods in Asymmetric Synthesis
Advanced Materials, Techniques, and Applications
2011
ISBN: 978-0-470-64136-1

Gubin, S. P. (ed.)

Magnetic Nanoparticles
2009
ISBN: 978-3-527-40790-3

Arnabilino, D. B. (ed.)

Chirality at the Nanoscale
Nanoparticles, Surfaces, Materials and more
2009
ISBN: 978-3-527-32013-4
The cover picture shows Scanning Electron Micrographs of γ-MnO₂ synthesized for 2h, in lower and higher magnification. Taken from Chapter 10 of this book, Figure 18, with permission.
Contents

Preface XI
List of Contributors XIII

1 Introduction to Nanoparticles 1
Satoshi Horikoshi and Nick Serpone
1.1 General Introduction to Nanoparticles 1
1.2 Methods of Nanoparticle Synthesis 8
1.3 Surface Plasmon Resonance and Coloring 10
1.4 Control of Size, Shape, and Structure 12
1.4.1 Size Control of Nanoparticles 12
1.4.2 Shape Control of Nanoparticles 15
1.4.3 Structure Control of Nanoparticles 17
1.5 Reducing Agent in Nanoparticle Synthesis 18
1.6 Applications of Metallic Nanoparticles 19
1.6.1 Application of Nanoparticles in Paints 20
1.6.2 Application in Chemical Catalysis 20
1.6.3 Application of Nanoparticles in Micro-wiring 22
1.6.4 Application of Nanoparticles in Medical Treatments 22
References 23

2 General Features of Microwave Chemistry 25
Satoshi Horikoshi and Nick Serpone
2.1 Microwave Heating 25
2.2 Some Applications of Microwave Heating 26
2.3 Microwave Chemistry 29
2.3.1 Microwaves in Organic Syntheses 29
2.3.2 Microwaves in Polymer Syntheses 30
2.3.3 Microwaves in Inorganic Syntheses 31
2.3.4 Microwave Extraction 32
2.3.5 Microwave Discharge Electrodeless Lamps 32
2.4 Microwave Chemical Reaction Equipment 33
References 36
3 Considerations of Microwave Heating 39
 Satoshi Horikoshi and Nick Serpone
 3.1 General Considerations of Microwave Heating 39
 3.1.1 Electromagnetic Waves and a Dielectric Material 39
 3.1.2 Heating a Substance by the Microwaves’ Alternating Electric Field 40
 3.1.3 Heating a Dielectric by the Microwaves’ Alternating Magnetic Field 45
 3.1.4 Penetration Depth of Microwaves in a Dielectric Material 45
 3.1.5 Frequency Effects in Chemical Reactions 46
 3.2 Peculiar Microwave Heating 47
 3.2.1 Special Temperature Distribution 47
 3.2.2 Superheating 49
 3.2.3 Selective Heating in Chemical Reactions 50
 3.3 Relevant Points of Effective Microwave Heating 52
 References 53

4 Combined Energy Sources in the Synthesis of Nanomaterials 55
 Luisa Boffa, Silvia Tagliapietra, and Giancarlo Cravotto
 4.1 Introduction 55
 4.2 Simultaneous Ultrasound/Microwave Treatments 58
 4.3 Sequential Ultrasound and Microwaves 63
 4.3.1 Sequential Steps of the Same Reaction 63
 4.3.2 Sequential Reactions 69
 4.4 Conclusions 72
 References 72

5 Nanoparticle Synthesis through Microwave Heating 75
 Satoshi Horikoshi and Nick Serpone
 5.1 Introduction 75
 5.2 Microwave Frequency Effects 76
 5.2.1 Synthesis of Ag Nanoparticles through the Efficient Use of 5.8-GHz Microwaves 77
 5.2.2 Metal Nanoparticle Synthesis through the Use of 915-MHz Microwaves 79
 5.3 Nanoparticle Synthesis under a Microwave Magnetic Field 81
 5.4 Synthesis of Metal Nanoparticles by a Greener Microwave Hydrothermal Method 84
 5.5 Nanoparticle Synthesis with Microwaves under Cooling Conditions 85
 5.6 Positive Aspects of Microwaves’ Thermal Distribution in Nanoparticle Synthesis 87
 5.7 Microwave-Assisted Nanoparticle Synthesis in Continuous Flow Apparatuses 90
 5.7.1 Microwave Desktop System of Nanoparticle Synthesis in a Continuous Flow Reactor 91
 5.7.2 Synthesis of Metal Nanoparticles with a Hybrid Microreactor/Microwave System 92
5.7.3 Other Examples of Continuous Microwave Nanoparticle Synthesis Equipment 94
5.7.4 Microwave Calcination Equipment for the Fabrication of Nanometallic Inks 95
5.7.5 Synthesis of Metal Nanoparticle Using Microwave Liquid Plasma 96
5.7.6 Compendium of Microwave-Assisted Nanoparticle Syntheses 96

6 Microwave-Assisted Solution Synthesis of Nanomaterials 107

Xianluo Hu and Jimmy C. Yu

6.1 Introduction 107
6.2 Synthesis of ZnO Nanocrystals 110
6.2.1 Synthesis of Colloidal ZnO Nanocrystals Clusters 111
6.2.2 Controlled Growth of Basic and Complex ZnO Nanostructures 113
6.2.3 Synthesis of ZnO Nanoparticles in Benzyl Alcohol 113
6.3 Synthesis of α-Fe_2O_3 Nanostructures 114
6.3.1 α-Fe_2O_3 Hollow Spheres 115
6.3.2 Monodisperse α-Fe_2O_3 Nanocrystals with Continuous Aspect-Ratio Tuning and Precise Shape Control 116
6.3.3 Self-Assembled Hierarchical α-Fe_2O_3 Nanoarchitectures 118
6.4 Element-Based Nanostructures and Nanocomposite 118
6.4.1 Silver Nanostructures 118
6.4.2 Te Nanostructures 122
6.4.3 Selenium/Carbon Colloids 123
6.5 Chalcogenide Nanostructures 125
6.5.1 Cadmium Chalcogenides 125
6.5.2 Lead Chalcogenides 129
6.5.3 Zinc Chalcogenides 131
6.6 Graphene 132
6.7 Summary 135

References 135

7 Precisely Controlled Synthesis of Metal Nanoparticles under Microwave Irradiation 145

Zhi Chen, Dai Mochizuki, and Yuji Wada

7.1 Introduction 145
7.1.1 General Introduction—Green Chemistry 145
7.1.2 Microwave Chemistry for the Preparation of Metal Nanoparticles 147
7.2 Precise Control of Single Component under Microwave Irradiation 152
7.2.1 Spheres 152
7.2.1.1 Au Nanoparticles 152
7.2.1.2 Ag Nanoparticles 154
7.2.1.3 Pt Nanoparticles 156
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.4</td>
<td>Pd, Ru, and Rh Nanoparticles</td>
</tr>
<tr>
<td>7.2.1.5</td>
<td>Other Transition Metals</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Nanorods and Nanowires</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Ag Nanorods and Nanowires</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Au, Pt, Ni Nanorods and Nanowires</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Other Morphologies</td>
</tr>
<tr>
<td>7.2.3.1</td>
<td>Au</td>
</tr>
<tr>
<td>7.2.3.2</td>
<td>Ag</td>
</tr>
<tr>
<td>7.2.3.3</td>
<td>Pt, Pd, Ni, and Co</td>
</tr>
<tr>
<td>7.3</td>
<td>Precise Control of Multicomponent Structures under Microwave Irradiation</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Multicomponent Nanoparticles</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>Core–Shell Structures</td>
</tr>
<tr>
<td>7.3.1.2</td>
<td>Alloys</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Metal Nanoparticles on Supports</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Metal Oxide Supports</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Carbon Material Supports</td>
</tr>
<tr>
<td>7.3.2.3</td>
<td>Other Supports</td>
</tr>
<tr>
<td>7.4</td>
<td>An Example of Mass Production Oriented to Application</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

References | 180 |

8 Microwave-Assisted Nonaqueous Routes to Metal Oxide Nanoparticles and Nanostructures | 185

Markus Niederberger

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Nonaqueous Sol–Gel Chemistry</td>
</tr>
<tr>
<td>8.3</td>
<td>Polyol Route</td>
</tr>
<tr>
<td>8.4</td>
<td>Benzyl Alcohol Route</td>
</tr>
<tr>
<td>8.5</td>
<td>Other Mono-Alcohols</td>
</tr>
<tr>
<td>8.6</td>
<td>Ionic Liquids</td>
</tr>
<tr>
<td>8.7</td>
<td>Nonaqueous Microwave Chemistry beyond Metal Oxides</td>
</tr>
<tr>
<td>8.8</td>
<td>Summary and Outlook</td>
</tr>
</tbody>
</table>

References | 202 |

9 Input of Microwaves for Nanocrystal Synthesis and Surface Functionalization Focus on Iron Oxide Nanoparticles | 207

Irena Milosevic, Erwann Guenin, Yoann Lalatonne, Farah Benyettou, Caroline de Montferrand, Frederic Geinguenaud, and Laurence Motte

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2</td>
<td>Biomedical Applications of Iron Oxide Nanoparticles</td>
</tr>
<tr>
<td>9.3</td>
<td>Nanoparticle Synthesis</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Synthesis in Aqueous Solution</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Coprecipitation Method</td>
</tr>
<tr>
<td>9.3.1.2</td>
<td>Forced Hydrolysis</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>Microwave Plasma Synthesis of Nanoparticles: From Theoretical Background and Experimental Realization to Nanoparticles with Special Properties</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>Using Microwave Plasmas for Nanoparticle Synthesis</td>
</tr>
<tr>
<td>11.2.1</td>
<td>General Comments on Plasmas</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Considerations in a Microwave Plasma</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Particle Formation</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Characterization of Nanoparticles</td>
</tr>
<tr>
<td>11.3</td>
<td>Experimental Realization of the Microwave Plasma Synthesis</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Custom-Made Applicators</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Coated Nanoparticles and Particle Collection</td>
</tr>
<tr>
<td>11.4</td>
<td>Influence of Experimental Parameters</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Precursor Selection</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Influence of Precursor Concentration</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Interdependence of Microwave Power, Pressure, Temperature, and Gas Velocity</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Influence of Residence Time in the Plasma on Particle Size</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Summary of Experimental Parameters</td>
</tr>
<tr>
<td>11.5</td>
<td>Nanoparticle Properties and Application</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Ferrimagnetic Nanoparticles</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Gas-Sensing Nanoparticles</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Nanoparticles for Anodes in Li-Ion Batteries</td>
</tr>
<tr>
<td>11.6</td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>12</td>
<td>Oxidation, Purification and Functionalization of Carbon Nanotubes under Microwave Irradiation</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>12.2</td>
<td>Oxidation and Purification</td>
</tr>
<tr>
<td>12.3</td>
<td>Functionalization</td>
</tr>
<tr>
<td>12.4</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

Index 325
The special optical characteristics imparted by metallic nanoparticles have been used in producing colored glass ever since the 4th century AD, even though the craftsmen were unable to see the nanoparticles and thus explain the true character of metallic colloids. The first scientific evaluation of a colloid (gold) was done by Michael Faraday in 1857; he remarked that colloidal gold sols have properties different from bulk gold (Chapter 1, Table 1.2). The history of nanomaterials dates back to 1959, when Richard P. Feynman, a physicist at Cal Tech, forecasted the advent of nanomaterials. In one of his classes he stated that “there is plenty of room at the bottom” and suggested that scaling down to the nano-level and starting from the bottom-up was the key to future technologies and advances. The remarkable progress in characterizing nanoparticles and unravelling novel physical and chemical properties of nanoparticles has opened the possibility of new materials. Simple preparation methods using various techniques to produce high-quality nanoparticles are now available (Chapter 1, Figure 1.4), one of which is the use of microwave heating that has attracted considerable attention worldwide. Several books have been written mostly on microwave-assisted organic syntheses in the past decade, yet none have dealt specifically with microwaves and inorganic materials except perhaps in the use of microwave radiation in the sintering of ceramics. The latter notwithstanding, research in nanoparticle syntheses with microwaves has seen a remarkable growth in the last several years.

The main purpose of this book is to give an overview of nanoparticle synthesis using the microwave method, with the first chapter providing an introduction to nanoparticles followed by two other chapters that explain some of the fundamentals of microwave heating (Chapters 2 and 3). In the remaining chapters several specialists in the field describe some of the specifics and variations in nanoparticle synthesis. As the data available in the literature were enormous, we had to make the difficult choice of including only the most relevant and up-to-date literature; we apologize to the reader if we missed to include other worthwhile contributions. Prominent in the book are abundant chemical information and some beautiful TEM data that define the structural features of nanoparticles. We are thankful to all the contributors who have answered the call, and also to the Wiley-VCH editorial staff for their thorough and professional assistance. The data presented would not have been possible without the fruitful collaboration of many university and
industrial researchers, and not least without the cooperation of students whose names appear in many of the earlier publications. We are indeed very grateful for their effort.

We hope this book becomes a starting point for researchers in other fields to become interested in pursuing microwave chemistry, in general, and microwave-assisted nanoparticle syntheses, in particular.

January 2013
Satoshi Horikoshi
Nick Serpone
List of Contributors

Farah Benyettou
UMR 7244 CNRS, University of Paris 13
CSPBAT Laboratory
74 rue Marcel Cachin, 93017 Bobigny France

Luisa Boffa
Università di Torino
Dipartimento di Scienza e Tecnologia del Farmaco
via P. Giuria 9
10125 Torino
Italy

Zhi Chen
Tokyo Institute of Technology
Department of Applied Chemistry
Graduate School of Science and Engineering
2-12-1 Ookayama
Meguro, Tokyo 152-8552
Japan

Giancarlo Cravotto
Università di Torino
Dipartimento di Scienza e Tecnologia del Farmaco
via P. Giuria 9
10125 Torino
Italy

Caroline de Montferrand
UMR 7244 CNRS, University of Paris 13
CSPBAT Laboratory
74 rue Marcel Cachin, 93017 Bobigny France

Davide Garella
Università di Torino
Dipartimento di Scienza e Tecnologia del Farmaco
via P. Giuria 9
10125 Torino
Italy

Frederic Geinguenaud
UMR 7244 CNRS, University of Paris 13
CSPBAT Laboratory
74 rue Marcel Cachin, 93017 Bobigny France

Erwann Guenin
UMR 7244 CNRS, University of Paris 13
CSPBAT Laboratory
74 rue Marcel Cachin, 93017 Bobigny France