Vincentz Network GmbH & Co KG
Emmanouil Spyrou

Powder Coatings
Chemistry and Technology
3rd Revised Edition
Emmanouil Spyrou

Powder Coatings

Chemistry and Technology

3rd Revised Edition
Preface

“If I have seen a little further, it is by standing on the shoulders of giants.” (Isaac Newton, 1676) The excellent original book “Powder Coatings, Chemistry and Technology” written by Tosko Aleksandar Misev and later updated by Peter Gillis de Lange has served for my generation as a sort of bible on its sector. Therefore, it has been a great honor while at the same time a tremendous challenge to write a third edition of this book. Due to this respect the original text is maintained where possible, but altered and extended if recent scientific findings made it necessary.

The Stone Age did not end due to a lack of stones. New technologies replace the old ones; novel developments change the look of the world, sometimes at an incredibly fast speed. Just to name a few recent incidents since the last print of the book: The rise of China, severe worldwide financial crises, the changed way of communicating (e.g. smart phones, social media) and radical governmental regulations (e.g. REACH). Of course, these developments had influences on the world of powder coatings, too. Consolidation, relocation and customization are some of the effects. Replacement of toxic ingredients (e.g. TGIC), use of energy saving curing methods and the extension of powder coatings into new application fields are the interconnected technological changes that are covered in this book.

This book is directed to anybody who is involved in developing, producing, testing and marketing of powder coatings, raw materials or application equipment.

What is new compared to the second edition? More than 5,000 recent articles and patents concerning powder coatings have been evaluated and 250 of those have been referenced in this book to ensure that it illustrates the current state-of-the-art. Highlighted core terms and a significant extended index should help finding the desired topic in a shorter time. A list of powder coating related web addresses will enable the reader to locate additional relevant information at the push of a button. Product and company names have been updated as much as possible. Plus more than 30 new photos, diagrams and drawings complete this revised and updated third edition.

I would like to thank Werner Grenda for valuable discussions, Dr. Corey King for corrections of the manuscript and Dr. Michael Ringel for his contribution regarding REACH. Many thanks to the two dozens companies for the excellent additional photos they provided for the 3rd edition of this book.

Emmanouil Spyrou

Marl, Germany, Mai 2012
Another interesting book hint...

Coatings Formulation
2nd Revised Edition

The 2nd revised edition of the book “Coatings Formulation” provides detailed explanations of new recipes and paint formulations in two steps: From the chemical composition of the binders to the formulation advice and analysis of existing recipes. As a special plus the reader will find new figures and tables to understand the development of the paint formulations and to visualize the multiplicity of the processes much better.

Order at: www.european-coatings.com/shop
Contents

1 Introduction .. 13
 1.1 Historical background ... 13
 1.2 Market situation and powder economics .. 16
 1.3 REACH ... 19
 1.4 References... 21

2 Thermoplastic powder coatings .. 22
 2.1 Vinyl powder coatings .. 23
 2.1.1 PVC powder coatings ... 23
 2.1.2 Fluor based powder coatings .. 29
 2.2 Polyolefinic based powder coatings ... 31
 2.3 Nylon based powder coatings .. 37
 2.4 Polyester powder coatings ... 43
 2.5 References... 47

3 Thermosetting powder coatings .. 50
 3.1 Curing reactions used in powder coatings .. 51
 3.1.1 Acid/epoxy curing reaction .. 52
 3.1.2 Acid anhydride/epoxy curing reaction ... 54
 3.1.3 Epoxy/amino curing reaction .. 56
 3.1.4 Polyphenols/epoxy curing reaction ... 58
 3.1.5 Polyetherification .. 58
 3.1.6 Isocyanate/hydroxyl curing reaction .. 60
 3.1.7 Curing with amino resins .. 68
 3.1.8 Transesterification .. 73
 3.1.9 Radiation curing ... 74
 3.1.10 References... 79
 3.2 Monitoring the curing process ... 83
 3.2.1 Differential scanning calorimetry (DSC) ... 84
 3.2.2 Thermogravimetry analysis (TGA) ... 89
 3.2.3 Thermal and dynamic mechanical analysis (TMA, DMA) 91
 3.2.4 Real Time Fourier Transform IR spectroscopy (RT-FTIR) 96
 3.2.5 References... 98
 3.3 Crosslinkers for powder coatings .. 99
 3.3.1 Crosslinkers of the epoxy type .. 99
 3.3.1.1 Triglycidyl isocyanurate (TGIC) .. 99
 3.3.1.2 "Solid solutions" of glycidyl esters ... 102
 3.3.1.3 Aliphatic oxiranes ... 103
 3.3.1.4 Glycidyl methacrylate (GMA) .. 103
 3.3.2 Polyisocyanates ... 104
 3.3.2.1 Caprolactam blocked IPDI derivatives ... 104
 3.3.2.2 Uretdiones ... 106
 3.3.2.3 TDI derivatives ... 110
 3.3.2.4 TMXDI and other polyisocyanates .. 111
 3.3.3 Polyamines .. 113
 3.3.3.1 Dicyandiamide and its derivatives .. 113
 3.3.3.2 Modified aromatic and aliphatic polyamines .. 114
Parameters influencing powder coating properties

4

4.1 Molecular weight of binder systems ... 224
4.2 Functionality of the coating composition .. 224
4.3 Glass transition temperature .. 226
4.3.1 \(T_g \) and powder stability ... 227
4.3.2 \(T_g \) and melt viscosity .. 228
4.3.3 \(T_g \) and thermal stress development .. 229
4.3.4 Molecular weight and \(T_g \) ... 230
4.3.5 Chemical structure and \(T_g \) .. 231
4.3.6 \(T_g \) of polymer blends .. 232
4.4 Viscosity .. 233
4.4.1 Viscosity and processing performances ... 234
4.4.2 Viscosity and film forming properties .. 235
4.4.3 Viscosity and film forming properties ... 236
4.5 Resin/crosslinker ratio .. 237
4.6 Catalyst level... 238

3.3.4 Polyphenols .. 115
3.3.5 Acid anhydrides .. 117
3.3.6 Amino resins .. 118
3.3.7 Hydroxy alkyl amides (HAA) ... 121
3.3.8 References .. 124
3.4 Industrial thermosetting powder coatings .. 127
3.4.1 Epoxy powder coatings ... 127
3.4.2 Polyester powder coatings and related .. 138
3.4.2.1 Interior polyester powder coatings ... 144
3.4.2.2 Exterior polyester powder coatings ... 148
3.4.3 Acrylic powder coatings ... 160
3.4.4 Unsaturated polyester powder coatings .. 169
3.4.5 Radiation curable powder coatings ... 172
3.4.5.1 UV (and EB) curable powder coatings ... 172
3.4.5.2 NIR curable powder coatings ... 182
3.4.6 Silicone-based powder coatings ... 184
3.4.7 References ... 189
3.5 Additives in powder coatings .. 195
3.5.1 Flow control additives .. 195
3.5.2 Degassing additives .. 198
3.5.3 UV absorbers and light stabilizers ... 198
3.5.4 Anti-oxidants ... 199
3.5.5 Pigment dispersing aids ... 199
3.5.6 Antistatic and charge control additives .. 200
3.5.7 Tribo-charging additives .. 200
3.5.8 Anti-caking (free-flow) additives .. 201
3.5.9 Mar resistance and slip improving additives ... 202
3.5.10 Texturizing additives .. 204
3.5.11 Gloss control additives ... 207
3.5.12 Catalysts (accelerators) .. 208
3.5.13 Miscellaneous additives ... 208
3.5.14 Pigments and fillers .. 209
3.5.15 References ... 210
3.6 Matt and semi-matt powder coatings ... 213
3.6.1 References ... 214
3.5.16 References ... 210

4 Parameters influencing powder coating properties
6.2 Application of powder coatings ... 329
6.2.1 Electrostatic spraying technique ... 330
6.2.1.1 Corona charging guns ... 330
6.2.1.2 Tribo charging guns ... 335
6.2.1.3 Alternative guns ... 338
6.2.1.4 Factors affecting the spraying process 339
6.2.2 Fluidized bed process ... 342
6.2.3 Electrostatic fluidized bed ... 344
6.2.4 Flame-spray technique ... 345
6.2.5 Comparison between different application techniques 346
6.2.6 Electromagnetic brush (EMB) technology 347
6.2.7 Electrostatic spraying with “Kompstat” technology 349
6.3 Design of the spraying booths ... 350
6.3.1 Color change in the powder coating process 352
6.4 Troubleshooting .. 354
6.5 References .. 358

7 Future developments .. 361
7.1 General trends of the powder coating market 361
7.2 Special effects .. 362
7.3 Conclusions .. 365

8 Appendix .. 366
8.1 List of abbreviations .. 366
8.2 Weblinks .. 369

Author .. 371

Index .. 373
With our innovative VESTAMIN®, VESTANAT®, VESTAGON®, and VESTASOL® product brands, we supply high quality crosslinkers for the coatings, composites, flooring and adhesives industries. Evonik is – and has been for more than 50 years– the world’s only supplier of products from the isophorone chemistry in all stages of refinement. VESTAGON® is used as an eco-friendly and high-performance powder coating Crosslinker, for example, for household appliances.

Evonik. Power to create.
1 Introduction

1.1 Historical background

Two thousand five hundred years ago the great Greek philosopher Thales of Miletus (624 to 556 BC), who was dubbed as the “father of science”, was the first to discover that amber stone when rubbed attract other objects. The Greek word for amber, ἀμβρός (electron), is the origin of electrostatic forces, which are used nowadays for almost 90% of all powder coating applications.

The appearance of powder coatings is often associated with the ecological and energy related events of the late 1960’s and early 1970’s. The famous Rule 66 which was brought in by The Town Council of Los Angeles in 1966 was the first legislative act regulating the environmental aspects of the coatings. Later on similar regulations were introduced in most of the industrially developed countries.

Although the history of powder coatings has been strongly influenced by environmental aspects, first developments in the field began in the 1940’s with a simple flame spray application process. Early in 1950’s powdered PVC was successfully applied by Gemmer in a fluidized bed process on a preheated metal surface [1]. A patent application for Gemmer’s invention was filed in Germany in 1953 and the patent was issued in 1955. Very soon the fluidized bed technique for application of thermoplastic powders including polyethylene and nylon powder coatings was well established in the USA.

In the late 1950’s the first thermosetting powder coatings appeared on the market, mainly as a result of the research work done by Shell Chemicals. The target was development of superior protective (“functional”) organic coatings for the company’s own underground natural gas and oil pipelines. The first systems were relatively simple physical dry blends of epoxy resins, hardeners and pigments dispersed by ball milling techniques. Due to a considerable degree of heterogeneity, the application results were rather inconsistent.

The hot melt mixing methods of the present day for production of powder coatings were preceded by a technique that employed liquid epoxy resins and hardeners. The homogeneous liquid binder/crosslinker blend was prereacted until partially cured (“B stage”) solid material was obtained, which was finely ground in the next step. The completely cured “C stage” was obtained by stoving the “B stage” powders at high temperatures. A drawback of this technique was the lack of reproducibility and difficult control of the process [2].

Hot melt compounding on a heated twin roller mill or in a heated Z-blade mixer was already a step forward in the development of thermosetting powder coatings, but the immense cleaning problems, created by the fast(er) curing powder coatings, have almost completely excluded the Z-blade mixer and of course the twin roller mill from the machines (extruders) used to produce contemporary powder coatings. However, Z-blade mixers are still used for batch-wise production of thermoplastic powder coatings, where chemical reactivity does not play a role.

Extrusion methods for production of thermosetting powder coatings, which are in current use, were developed in the Shell Chemical Laboratories in England and The Netherlands in