Feed Efficiency in the Beef Industry

Feed Efficiency in the Beef Industry provides a thorough and concise overview of feed efficiency in beef cattle. It frames the great importance of feed efficiency to the industry and details the latest findings of the many scientific disciplines that intersect and aim to improve efficient and sustainable production of nutritious beef. The vast majority of production costs are directly tied to feed. With increased demand for grains to feed a rapidly increasing world population and to supply a new demand for alternative fuels, feed costs continue to increase. In recent years, the negative environmental impacts of inefficient feeding have also been realized; as such, feed efficiency is an important factor in both economic viability and environmental sustainability of cattle production.

Feed Efficiency in the Beef Industry covers a broad range of topics ranging from economic evaluation of feed efficiency to the physiological and genetic bases of efficient conversion of feed to high quality beef. Chapters also look at how a fuller understanding of feed efficiency is leading to new selective breeding efforts to develop more efficient cattle.

With wide-ranging coverage from leading international researchers, Feed Efficiency in the Beef Industry will be a valuable resource for producers who wish to understand the complexities, challenges, and opportunities to reduce their cost of production; for students studying the topic; and for researchers and professionals working in the beef industry.

Editor
Rodney A. Hill, Department of Animal and Veterinary Sciences, University of Idaho, leads the Growth Physiology program in the department.

Related Titles
Environmental Physiology of Livestock
R. J. Collier and J. L. Collier (Editors)
ISBN: 9780813811765

Bovine Genomics
James Womack (Editor)
ISBN: 9780813821221

978-0-4709-5952-7
Feed Efficiency in the Beef Industry
Feed Efficiency in the Beef Industry

Edited by
RODNEY A. HILL
Dedication

This book is dedicated to all those who have shared their knowledge, collegiality, and support: my mentors, teachers, colleagues, and students. Above all, to my wife, family, and friends.
Contents

Contributors ix
Foreword xi
Preface xiii
Acknowledgments xv

Introduction 1
Rodney A. Hill

Chapter 1 Input Factors Affecting Profitability: a Changing Paradigm and a Challenging Time 7
Jason K. Ahola and Rodney A. Hill

Chapter 2 Measuring Individual Feed Intake and Utilization in Growing Cattle 21
D.H. (Denny) Crews, Jr. and Gordon E. Carstens

Chapter 3 Producer Awareness and Perceptions about Feed Efficiency in Beef Cattle 29
J.D. Wulfhorst, Stephanie Kane, Jason K. Ahola, John B. Hall, and Rodney A. Hill

Chapter 4 Feed Efficiency in Different Management Systems: Cow-Calf and in the Feedyard 47
Keela M. Retallick and Dan B. Faulkner

Chapter 5 Lessons from the Australian Experience 61
Robert M. Herd and Paul F. Arthur

Chapter 6 Nutrition and Feed Efficiency of Beef Cattle 75
Monty S. Kerley

Chapter 7 Genetic Improvement of Feed Efficiency 93
Paul F. Arthur and Robert M. Herd

Chapter 8 Feed Efficiency and Animal Robustness 105
Wendy M. Rauw

Chapter 9 Interactions with Other Traits: Reproduction and Fertility 123
John A. Basarab, Carolyn Fitzsimmons, C. Scott Whisnant, and Robert P. Wettemann
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 10</td>
<td>Feed Efficiency Interactions with Other Traits: Growth and Product Quality</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Rodney A. Hill and Jason K. Ahola</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Estimating Feed Efficiency of Lactating Dairy Cattle Using Residual Feed Intake</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Erin E. Connor, Jana L. Hutchison, and H. Duane Norman</td>
<td></td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Muscle and Adipose Tissue: Potential Roles in Driving Variation in Feed Efficiency</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Cassie M. Welch, Marcus McGee, Theresa A. Kokta, and Rodney A. Hill</td>
<td></td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Epigenetics and Effects on the Neonate That May Impact Feed Efficiency</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Allison M. Meyer, Joel S. Caton, Bret W. Hess, Stephen P. Ford, and Lawrence P. Reynolds</td>
<td></td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Hormonal Regulation of Feed Efficiency</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Michael E. Davis, Macdonald P. Wick, and Martin G. Maquivar</td>
<td></td>
</tr>
<tr>
<td>Chapter 15</td>
<td>Variation in Metabolism: Biological Efficiency of Energy Production and Utilization That Affects Feed Efficiency</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Walter G. Bottje and Gordon E. Carstens</td>
<td></td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Modeling Feed Efficiency</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Roberto Sainz</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>287</td>
</tr>
</tbody>
</table>
Contributors

Jason K. Ahola Colorado State University
Paul F. Arthur New South Wales Department of Primary Industries, Australia
John A. Basarab Alberta Agriculture and Rural Development, Canada
Walter G. Bottje University of Arkansas
Gordon E. Carstens Texas A and M University
Joel S. Caton North Dakota State University
Erin E. Connor USDA-ARS, Beltsville
D.H. (Denny) Crews Jr. Colorado State University
Michael E. Davis The Ohio State University
Dan B. Faulkner University of Illinois at Urbana-Champaign
Carolyn Fitzsimmons University of Alberta, Canada
Stephen P. Ford University of Wyoming
John B. Hall University of Idaho
Robert M. Herd New South Wales Department of Primary Industries, Australia
Bret W. Hess University of Wyoming
Rodney A. Hill University of Idaho
Jana L. Hutchison USDA-ARS, Beltsville
Stephanie Kane University of Idaho
Monty S. Kerley University of Missouri
Theresa A. Kokta University of Idaho
Martin G. Maquivar The Ohio State University
Marcus McGee University of Idaho
Allison M. Meyer University of Wyoming
CONTRIBUTORS

H. Duane Norman USDA-ARS, Beltsville
Wendy M. Rauw Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spain
Keela M. Retallick University of Illinois at Urbana-Champaign
Lawrence P. Reynolds North Dakota State University
Roberto Sainz University of California (Davis)
Cassie M. Welsh University of Idaho
Robert P. Wettemann Oklahoma State University
C. Scott Whisnant North Carolina State University
Macdonald P. Wick The Ohio State University
J.D. Wulfhorst University of Idaho
Foreword

I first met Dr Hill at a BIF (Beef Improvement Federation) convention in 2009. I was impressed with his dedication and enthusiasm to coordinate meaningful change in researching, identifying, and providing selection tools for improving efficiency in cattle production. It is a passion our family has shared over three generations.

With this book, Dr. Hill and colleagues have provided a valuable service to the beef industry. This book, as a detailed anatomy of cattle efficiency, profiles where we are today and establishes the foundation for future efficiency research.

The timeliness of this book cannot be overstated. Over the past 5 years, the United States has consistently produced 25% of the world beef supply, while other world beef production has declined slightly year over year. In 2012, US beef production is predicted to decline by 5%. This is a disturbing statistic at a time when global population has surpassed 7 billion. By 2030, world population is forecasted to be over 8 billion, global demand for meat is expected to rise by 55%, and energy demand will increase by 40%. We must meet this increasing demand constrained to substantially the same cropland the world has cultivated since 1970.

This book comes at a time when the United States and world beef producers are challenged by many traditional and emerging issues such as:

- Weather.
- Rising energy costs.
- Increasing nonagricultural use for grazing land and increasing competition for traditional feed sources.
- Complex government and international policies including a confounding US biofuel policy.

These issues affect feed prices. Feed costs are directly related to 75% of the cost of producing finished cattle.

Cattle producers take the vast amount of land only suitable for grazing that God has blessed us with, and through grazing cattle, harvest those grasses, conserving land for future generations while at the same time producing a nutritious protein product. By understanding the many challenges faced by cattle producers in maintaining a sustainable business balanced by a strong commitment to animal welfare, a safe, healthy beef supply, and sound environmental stewardship, you will begin to appreciate that beef is one of the great success stories in food production.

For more than 50 years, it has been my family’s commitment to identify genetics that have economic importance to the rancher, feeder, and consumer. In 2007, we invested heavily in technology developed by GrowSafe Systems Ltd to measure individual intake in young bulls and heifer calves. We now test about 1700 head a year, and the first offspring we fed from one of these high-efficiency
bulls performed at the same level with 15% less intake. This improvement took a systematic, measured approach over time, but these results were unprecedented. To those who say we are a mature industry, I say we have just entered a new generation.

As you travel through the chapters of this book, you will better understand the importance of developing genetic traits for selection, such as RFI, that allow cattle producers to produce more effectively with less. Through this book, you will also come to appreciate the positive conservation and environmental impacts that selecting for efficiency traits such as RFI offer. I hope you appreciate Dr. Hill’s commitment to consolidating groundbreaking research from leading scientists in the field of cattle efficiency, particularly as the scientific community faces reduced agricultural research funding.

As a beef producer, use the knowledge you gain to expand your operation’s opportunity to improve efficiency. These are truly exciting times as product quality and production efficiency will be the profitability drivers that sustain our industry. Consider the tremendous opportunity we have in meeting today’s and tomorrow’s responsibilities to feed the world and enhance our natural resources in a sustainable and meaningful manner.

Leo McDonnell
Columbus, Montana
Preface

As I write, in November 2011, we remain in the throes of a lingering worldwide recession that has affected business costs, changed markets, and challenged production models across many industries. The issues around feed efficiency in the beef industry remain complex and many perspectives are evolving and changing. An enlightening perspective that a beef industry colleague recently expressed is that there has never been a better time to embrace opportunities to excel.

I see that improving feed efficiency in the beef industry is a great example of such an opportunity. The issues and challenges we face in improving feed efficiency are driven by ever increasing knowledge of the underpinning science, competing economic forces, and inevitably industry politics. I also see and experience a broad array of interpretations of data and perspectives from industry representatives, producers, scientists, and others. Our beef industry is large and complex with a broad array of interests and priorities. Multiple sectors within the industry variously work in collaboration or compete for a greater share of profits. The players vary in the scale and scope of their influence from large multinational entities to single families and individuals working to improve profitability and success, or especially in the case of smaller operations, just seeking to maintain a fulfilling lifestyle.

The topic of feed efficiency in the beef industry is one that has slowly gained the notice of both scientists and the industry over the last two decades. However, during the past few years, the costs of feedstuffs and fuel (and energy generally) have risen to new highs and have undergone unprecedented volatility bringing feed efficiency to greater prominence.

For the beef producer, improving feed efficiency is a move away from thinking about the outputs from their enterprise, driving revenue, to thinking about taking control of costs. In one aspect, beef producers actually do have some level of control over how and how much they invest in inputs such as feed, whereas they have little or no control over the price they receive for their products. Thus, controlling feed costs is a pragmatic way for producers to improve profitability.

Scientists are intent on discovery and providing better approaches to improving feed efficiency. This is a complex, real-world problem that cannot be addressed by a single scientific discipline. The collaboration of many is essential to progress. The so-called hard sciences also need the collaboration of economists to understand costs, revenues, and profitability and social scientists to help us understand how and why producers either adopt new knowledge or why they may be reluctant to do so.

From my interactions with many producers and others in the broader beef industry, I know that scientists have a lot to learn, and I have benefited from the profound insights of people with practical experience and perspectives who have not seen the inside of a laboratory or pursued a college degree. As the editor of this book, I am deeply indebted to many from both outside and inside academe who have shared their knowledge or who have stimulated my thinking and helped me gain new insights.