Sustainable Construction
Sustainable Construction
Green Building Design and Delivery
Third Edition

Charles J. Kibert
For Charles, Nicole, and Alina,
and in memory of two friends and sustainability stalwarts,
Ray Anderson and Gisela Bosch
Contents

Foreword xiii
Preface xv

Chapter 1

Introduction and Overview 1
The Shifting Landscape for High-Performance Buildings 3
Sustainable Development and Sustainable Construction 6
The Vocabulary of Sustainable Development and Sustainable Construction 7
Sustainable Design, Ecological Design, and Green Design 10
Rationale for High-Performance Green Buildings 12
State and Local Guidelines for High-Performance Construction 13
Green Building Progress and Obstacles 14
Book Organization 16
Trends in High-Performance Green Building 16
Case Study: Kroon Hall, Yale University, New Haven, Connecticut 22
Summary and Conclusions 25
Notes 25
References 27

Part I

Green Building Foundations 29

Chapter 2

Background 33
Ethics and Sustainability 35
Basic Concepts and Vocabulary 43
Major Environmental and Resource Concerns 52
The Green Building Movement 60
Case Study: OWP 11, Stuttgart, Germany 70
Summary and Conclusions 72
Notes 73
References 76
Chapter 3

Ecological Design

Design versus Ecological Design 80
Historical Perspective 82
Contemporary Ecological Design 88
Key Green Building Publications: Early 1990s 89
Key Contemporary Publications about Ecological Design 92
Future Ecological Design 97
Thermodynamics: Limits on Recycling and the Dissipation of Materials 104
Thought Piece: Regenerative Development and Design: Working with the Whole by Bill Reed 109
Summary and Conclusions 111
Notes 111
References 112

Part II

Assessing High-Performance Green Buildings 115

Chapter 4

Green Building Assessment

Major Green Building Assessment Systems Used in the United States 121
International Building Assessment Systems 123
BREEAM Case Study: AHVLA Stores Building, Weybridge, United Kingdom 127
Green Star Case Study 133
Thought Piece: Shifting Emphasis in Green Building Performance Assessment by Raymond J. Cole 138
Summary and Conclusions 141
Notes 141
References 142

Chapter 5

The US Green Building Council
LEED Building Rating System

Brief History of LEED 144
Structure of the LEED Suite of Building Assessment Systems 145
LEED Credentials 146
The LEED Process 147
LEED Categories 152
Case Study: The Heavener Football Complex, University of Florida, Gainesville 169
Summary and Conclusions 173
Notes 173
Chapter 6

The Green Globes Building Assessment System 175
The Green Globes Process 176
Green Globes Verification and Certification 177
Structure of the ANSI/GBI 01-2010 Standard 177
The Green Globes Professional and Green Globes Assessor 180
Case Study: Health Sciences Building, St. Johns River State College, St. Augustine, Florida 181
Summary and Conclusions 187
Note 187

Part III

Green Building Design 189

Chapter 7

The Green Building Design Process 191
Conventional versus Green Building Delivery Systems 191
Executing the Green Building Project 195
The Integrated Design Process 199
Role of the Charrette in the Design Process 204
Green Building Documentation Requirements 206
Case Study: Theaterhaus, Stuttgart, Germany 208
Summary and Conclusions 213
Notes 213

Chapter 8

The Sustainable Site and Landscape 215
Land and Landscape Approaches for Green Buildings 216
Land Use Issues 217
Sustainable Landscapes 223
Enhancing Ecosystems 230
Stormwater Management 230
Low-Impact Development 231
Heat Island Mitigation 236
Light Trespass and Pollution Reduction 237
Assessment of Sustainable Sites: The Sustainable Sites Initiative 238
Summary and Conclusions 240
Notes 240
References 241
Chapter 12

Indoor Environmental Quality

Indoor Environmental Quality: The Issues 389
Integrated IEQ Design 399
Addressing the Main Components of Integrated IEQ Design 402
Emissions from Building Materials 422
Economic Benefits of Good Indoor Environmental Quality 429
Summary and Conclusions 430
Notes 430
References 431

Part IV

Green Building Implementation

Chapter 13

Construction Operations and Commissioning

Site Protection Planning 435
Managing Indoor Air Quality during Construction 440
Construction Materials Management 444
Construction and Demolition Waste Management 448
Commissioning 450
Thought Piece: The Role of Commissioning in High-Performance Green Buildings by John Chyz 457
Summary and Conclusions 459
Notes 459
References 460

Chapter 14

Green Building Economics

General Approach 462
The Business Case for High-Performance Green Buildings 465
The Economics of Green Building 466
Quantifying Green Building Benefits 468
Managing First Costs 475
<table>
<thead>
<tr>
<th>Chapter 15</th>
<th>The Cutting Edge of Sustainable Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>483</td>
</tr>
<tr>
<td>Notes</td>
<td>484</td>
</tr>
<tr>
<td>References</td>
<td>486</td>
</tr>
<tr>
<td>Case Study: The Federal Building, San Francisco, California</td>
<td>486</td>
</tr>
<tr>
<td>Articulating Performance Goals for Future Green Buildings</td>
<td>490</td>
</tr>
<tr>
<td>The Challenges</td>
<td>491</td>
</tr>
<tr>
<td>Revamping Ecological Design</td>
<td>497</td>
</tr>
<tr>
<td>Today’s Cutting Edge</td>
<td>501</td>
</tr>
<tr>
<td>Thought Piece: Processes, Geometries, and Principles: Design in a Sustainable Future by Kim Sorvig</td>
<td>504</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>506</td>
</tr>
<tr>
<td>Notes</td>
<td>506</td>
</tr>
<tr>
<td>References</td>
<td>507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Quick Reference for LEED 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>509</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix B</th>
<th>The Sustainable Sites Initiative™ (SITES™) Guidelines and Performance Benchmarks 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>513</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix C</th>
<th>Unit Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>517</td>
</tr>
<tr>
<td>Abbreviations and Acronyms</td>
<td>519</td>
</tr>
<tr>
<td>Glossary</td>
<td>525</td>
</tr>
<tr>
<td>Index</td>
<td>537</td>
</tr>
</tbody>
</table>
The Roman architect, Vitruvius, once defined the purposes of architecture as creating commodity, firmness, and delight—roughly translated as usefulness, stability, and beauty. To that list, we now must add a fourth purpose, harmony, by which I mean the fit between buildings and the built environment broadly with the ecologies of particular places. In contrast to architecture as utilitarian or as form making, place making poses unique challenges. The first rule of place making is to ruin no other place. This requires considerable care, competence, and foresight in managing the upstream and the downstream effects of buildings from materials selection and construction to long-term operations and maintenance.

The challenge of creating commodity, firmness, delight, and harmony will be tougher in a world of 7 billion people predicted to grow to 10 billion by 2100 and facing worsening climate destabilization and its collateral economic, social, and political effects. In other words, ecological and economic constraints in the years ahead will limit what can be built, where, and how. Higher temperatures, larger storms, stronger winds, longer droughts, and rising sea levels will require more planning, better design, and more stringent engineering standards. Financial and climatic constraints could interact to diminish the role that architecture has played historically as a source of delight at a time when we will need a great deal of it. Vitruvius emphasized the importance of careful site selection for buildings and cities in order to maximize the salubrious effects of sun, wind, water, and shade. Those factors will become more important but less predictable in an age of rapid climate change. Moreover, designers can no longer assume that energy will be cheap and reliable. Military planners have said repeatedly that the US electric grid is highly vulnerable to terrorism, operator error, technological accident, and larger storms. Much the same could be said of the systems that provision us with water and food.

We have entered the rapids of human history and will need to respond with a new era of design. How architects, engineers, builders, and building managers respond to the new realities will have a larger impact on the human prospect than we thought even a few years ago. Building construction and operations are responsible for roughly 40 percent of global carbon emissions. If we are to make the necessary transition to climate stability, that number will have to decline dramatically as the number of buildings increases to accommodate a projected 40 percent rise in population. At the same time, the capacity of governments to respond to the climate emergency is being challenged both by those who want less government and by increasingly difficult economic circumstances. The upshot is that a great deal rides on the design and building professions and the private sector.

Against this background, the green building movement and the remarkable rise of the US Green Building Council and its counterparts elsewhere is a great success story, in no small measure due to the work of Charles Kibert and the Powell Center at the University of Florida in Gainesville. From modest beginnings in the 1990s to the present, the art and science of high-performance building is becoming the default for renovation and construction worldwide. It is now well documented that high-performance buildings have lower operating,