Exploring Arduino®: Tools and Techniques for Engineering Wizardry

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-54936-0
ISBN: 978-1-118-54948-3 (ebk)
ISBN: 978-1-118-78616-1 (ebk)

Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013937652

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Arduino is a registered trademark of Arduino, LLC. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.
To my grandmother, whose lifelong curiosity and encouragement inspires me to be a better person every day.
Credits

Acquisitions Editor
Mary James

Project Editor
Jennifer Lynn

Technical Editor
Scott Fitzgerald

Production Editor
Daniel Scribner

Copy Editor
Keith Cline

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Compositor
Cody Gates, Happenstance Type-O-Rama

Proofreader
James Saturnio, Word One

Indexer
John Sleeva

Cover Designer
Ryan Sneed

Cover Image
Courtesy of Jeremy Blum
Jeremy Blum recently received his Master’s degree in Electrical and Computer Engineering from Cornell University, where he previously received his Bachelor’s degree in the same field. At Cornell, he oversaw the design and creation of several sustainable buildings around the world and domestically through his founding and leadership of Cornell University Sustainable Design, a nationally recognized sustainable design organization that has been specifically lauded by the CEO of the U.S. and World Green Building Councils. In that vein, Jeremy has applied his passion for electrical engineering to design solar home energy monitoring systems, revolutionary fiber-optic LED lighting systems, and sun-tracking smart solar panels. He is also responsible for helping to start a first-of-its-kind entrepreneurial co-working space that contributes to the development of dozens of student start-ups (including some of his own creation) every year.

Jeremy has designed award-winning prosthetic control methods, gesture-recognition systems, and building-automation systems, among many other things. He designed the electronics for the MakerBot Replicator 3D printers (which are used by people around the world, and by notable organizations such as NASA), and the prototype electronics and firmware for the MakerBot Digitizer 3D Scanner. As a researcher in the renowned Creative Machines Lab, he has contributed to the creation of robots that can assemble themselves, self-learning quadrupedal robots, and 3D printers that redefine personal manufacturing. He has presented this research in peer-reviewed journals and at conferences as far away as India.

Jeremy produces YouTube videos that have introduced millions of people to engineering and are among the most popular Arduino tutorials on the Internet. He is well known within the international open source and “maker” communities for his development of open source hardware projects and tutorials that
have been featured on the Discovery Channel, and have won several awards and hack-a-thons. Jeremy was selected by the American Institute of Electrical and Electronics Engineers as the 2012 New Face of Engineering.

He offers engineering consulting services through his firm, Blum Idea Labs LLC, and he teaches engineering and sustainability to young students in New York City. Jeremy’s passion is improving people’s lives and our planet through creative engineering solutions. You can learn more about Jeremy and his work at his website: www.jeremyblum.com.

About the Technical Editor

Scott Fitzgerald is an artist and educator who has been using the Arduino platform as a teaching tool and in his practice since 2006. He has taught physical computing in the Interactive Telecommunications Program (ITP) of New York University since 2005, introducing artists and designers to microcontrollers. Scott works for the Arduino team, documenting new products and creating tutorials to introduce people to the platform. He was technical editor of the second edition of Making Things Talk in 2011, and he authored the book that accompanies the official Arduino Starter Kit in 2012.
First, I must thank my friends at Wiley publishing for helping to make this possible: Mary James, for encouraging me to write this book in the first place; and Jennifer Lynn, for keeping me on track as I worked through writing all the chapters. I also owe a big thanks to Scott Fitzgerald for his critical eye in the technical editing of this book.

Had it not been for the great folks at element14, I may never have gotten into producing my Arduino Tutorial Series, a prelude to the book you are about to read. Sabrina Deitch and Sagar Jethani, in particular, have been wonderful partners with whom I’ve had the privilege to work.

I wrote the majority of this book while simultaneously completing my Master’s degree and running two companies, so I owe a tremendous amount of gratitude to my professors and peers who put up with me while I tried to balance all of my responsibilities.

Finally, I want to thank my family, particularly my parents and my brother, David, whose constant encouragement reminds me why I do the things I do.
Contents at a Glance

Introduction xix

Part I Arduino Engineering Basics 1
Chapter 1 Getting Up and Blinking with the Arduino 3
Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19
Chapter 3 Reading Analog Sensors 41

Part II Controlling Your Environment 61
Chapter 4 Using Transistors and Driving Motors 63
Chapter 5 Making Sounds 91
Chapter 6 USB and Serial Communication 107
Chapter 7 Shift Registers 145

Part III Communication Interfaces 161
Chapter 8 The I2C Bus 163
Chapter 9 The SPI Bus 181
Chapter 10 Interfacing with Liquid Crystal Displays 199
Chapter 11 Wireless Communication with XBee Radios 221

Part IV Advanced Topics and Projects 255
Chapter 12 Hardware and Timer Interrupts 257
Chapter 13 Data Logging with SD Cards 277
Chapter 14 Connecting Your Arduino to the Internet 313

Appendix Deciphering the ATMega Datasheet and Arduino Schematics 341

Index 349
Contents

Introduction

Part I **Arduino Engineering Basics** 1

Chapter 1 Getting Up and Blinking with the Arduino 3

Exploring the Arduino Ecosystem 4
 - Arduino Functionality 4
 - Atmel Microcontroller 6
 - Programming Interfaces 6
 - General I/O and ADCs 7
 - Power Supplies 7
 - Arduino Boards 8
Creating Your First Program 13
 - Downloading and Installing the Arduino IDE 13
 - Running the IDE and Connecting to the Arduino 14
 - Breaking Down Your First Program 16
Summary 18

Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19

Digital Outputs 20
 - Wiring Up an LED and Using Breadboards 20
 - Working with Breadboards 21
 - Wiring LEDs 22
 - Programming Digital Outputs 24
Using For Loops 25
Pulse-Width Modulation with analogWrite() 27
Reading Digital Inputs 29
 - Reading Digital Inputs with Pulldown Resistors 29
 - Working with “Bouncy” Buttons 32
Building a Controllable RGB LED Nightlight 35
Summary 39
Chapter 3 Reading Analog Sensors 41
- Understanding Analog and Digital Signals 42
 - Comparing Analog and Digital Signals 43
 - Converting an Analog Signal to a Digital One 44
- Reading Analog Sensors with the Arduino: analogRead() 45
 - Reading a Potentiometer 45
 - Using Analog Sensors 50
 - Working with Analog Sensors to Sense Temperature 52
- Using Variable Resistors to Make Your Own Analog Sensors 54
 - Using Resistive Voltage Dividers 55
 - Using Analog Inputs to Control Analog Outputs 56
- Summary 59

Part II Controlling Your Environment 61

Chapter 4 Using Transistors and Driving Motors 63
- Driving DC Motors 65
 - Handling High-Current Inductive Loads 65
 - Using Transistors as Switches 66
 - Using Protection Diodes 67
 - Using a Secondary Power Source 68
 - Wiring the Motor 68
- Controlling Motor Speed with PWM 70
 - Using an H-Bridge to Control DC Motor Direction 72
 - Building an H-bridge Circuit 73
 - Operating an H-bridge Circuit 76
- Driving Servo Motors 80
 - Understanding the Difference Between Continuous Rotation and Standard Servos 80
 - Understanding Servo Control 80
 - Controlling a Servo 85
- Building a Sweeping Distance Sensor 86
- Summary 90

Chapter 5 Making Sounds 91
- Understanding How Speakers Work 92
 - The Properties of Sound 92
 - How a Speaker Produces Sound 94
- Using tone() to Make Sounds 95
 - Including a Definition File 95
 - Wiring the Speaker 96
 - Making Sound Sequences 99
 - Using Arrays 99
 - Making Note and Duration Arrays 100
 - Completing the Program 101
 - Understanding the Limitations of the tone() Function 102
- Building a Micro Piano 102
- Summary 105
Chapter 6 USB and Serial Communication

Understanding the Arduino’s Serial Communication Capabilities 107
 Arduino Boards with an Internal or External FTDI USB-to-Serial Converter 108
 Arduino Boards with a Secondary USB-Capable ATMega MCU Emulating a Serial Converter 110
 Arduino Boards with a Single USB-Capable MCU 112
 Arduino Boards with USB-Host Capabilities 114
Listening to the Arduino 115
 Using print Statements 115
 Using Special Characters 117
 Changing Data Type Representations 119
Talking to the Arduino 119
 Reading Information from a Computer or Other Serial Device 120
 Telling the Arduino to Echo Incoming Data 120
 Understanding the Differences Between Chars and Ints 121
 Sending Single Characters to Control an LED 122
 Sending Lists of Values to Control an RGB LED 125
Talking to a Desktop App 127
 Talking to Processing 127
 Installing Processing 128
 Controlling a Processing Sketch from Your Arduino 129
 Sending Data from Processing to Your Arduino 132
Learning Special Tricks with the Arduino Leonardo (and Other 32U4-Based Arduinos) 134
 Emulating a Keyboard 135
 Typing Data into the Computer 135
 Commanding Your Computer to Do Your Bidding 139
 Emulating a Mouse 140
Summary 144

Chapter 7 Shift Registers

Understanding Shift Registers 146
 Sending Parallel and Serial Data 147
 Working with the 74HC595 Shift Register 148
 Understanding the Shift Register Pin Functions 148
 Understanding How the Shift Register Works 149
 Shifting Serial Data from the Arduino 151
 Converting Between Binary and Decimal Formats 154
Controlling Light Animations with a Shift Register 154
 Building a “Light Rider” 154
 Responding to Inputs with an LED Bar Graph 157
Summary 160