Fundamentals of Fluid Mechanics and Transport Phenomena

Jean-Laurent Peube
Fundamentals of Fluid Mechanics and Transport Phenomena
Fundamentals of Fluid Mechanics and Transport Phenomena

Jean-Laurent Peube
Table of Contents

Preface ... xi

Chapter 1. Thermodynamics of Discrete Systems 1

1.1. The representational bases of a material system 1
 1.1.1. Introduction .. 1
 1.1.2. Systems analysis and thermodynamics 8
 1.1.3. The notion of state 11
 1.1.4. Processes and systems 13
1.2. Axioms of thermostatics ... 15
 1.2.1. Introduction ... 15
 1.2.2. Extensive quantities 16
 1.2.3. Energy, work and heat 20
1.3. Consequences of the axioms of thermostatics 21
 1.3.1. Intensive variables 21
 1.3.2. Thermodynamic potentials 23
1.4. Out-of-equilibrium states 29
 1.4.1. Introduction ... 29
 1.4.2. Discontinuous systems 30
 1.4.3. Application to heat engines 45

Chapter 2. Thermodynamics of Continuous Media 47

2.1. Thermostatics of continuous media 47
 2.1.1. Reduced extensive quantities 47
 2.1.2. Local thermodynamic equilibrium 48
 2.1.3. Flux of extensive quantities 50
 2.1.4. Balance equations in continuous media 54
 2.1.5. Phenomenological laws 57
2.2. Fluid statics .. 63
 2.2.1. General equations of fluid statics 63
4.3. Balance of mechanical and thermodynamic quantities 160
 4.3.1. Momentum balance .. 160
 4.3.2. Kinetic energy theorem 164
 4.3.3. The vorticity equation 171
 4.3.4. The energy equation .. 172
 4.3.5. Balance of chemical species 177
4.4. Boundary conditions ... 178
 4.4.1. General considerations 178
 4.4.2. Geometric boundary conditions 179
 4.4.3. Initial conditions .. 181
4.5. Global form of the balance equations 182
 4.5.1. The interest of the global form of a balance 182
 4.5.2. Equation of mass conservation 184
 4.5.3. Volume balance ... 184
 4.5.4. The momentum flux theorem 184
 4.5.5. Kinetic energy theorem 186
 4.5.6. The energy equation ... 187
 4.5.7. The balance equation for chemical species 188
4.6. Similarity and non-dimensional parameters 189
 4.6.1. Principles .. 189

Chapter 5. Transport and Propagation ... 199
 5.1. General considerations .. 199
 5.1.1. Differential equations 199
 5.1.2. The Cauchy problem for differential equations 202
5.2. First order quasi-linear partial differential equations 203
 5.2.1. Introduction ... 203
 5.2.2. Geometric interpretation of the solutions 204
 5.2.3. Comments .. 206
 5.2.4. The Cauchy problem for partial differential equations 206
5.3. Systems of first order partial differential equations 207
 5.3.1. The Cauchy problem for n unknowns and two variables 207
 5.3.2. Applications in fluid mechanics 210
 5.3.3. Cauchy problem with n unknowns and p variables 216
 5.3.4. Partial differential equations of order n 218
 5.3.5. Applications .. 220
 5.3.6. Physical interpretation of propagation 223
5.4. Second order partial differential equations 225
 5.4.1. Introduction .. 225
 5.4.2. Characteristic curves of hyperbolic equations 226
 5.4.3. Reduced form of the second order quasi-linear partial differential equation ... 229
 5.4.4. Second order partial differential equations in a finite domain ... 232
5.4.5. Second order partial differential equations and their boundary conditions .. 233
5.5. Discontinuities: shock waves .. 239
 5.5.1. General considerations .. 239
 5.5.2. Unsteady 1D flow of an inviscid compressible fluid 239
 5.5.3. Plane steady supersonic flow 244
 5.5.4. Flow in a nozzle .. 244
 5.5.5. Separated shock wave .. 248
 5.5.6. Other discontinuity categories 248
 5.5.7. Balance equations across a discontinuity 249
5.6. Some comments on methods of numerical solution 250
 5.6.1. Characteristic curves and numerical discretization schemes 250
 5.6.2. A complex example .. 253
 5.6.3. Boundary conditions of flow problems 255

Chapter 6. General Properties of Flows 257

 6.1. Dynamics of vorticity .. 257
 6.1.1. Kinematic properties of the rotation vector 257
 6.1.2. Equation and properties of the rotation vector 261
 6.2. Potential flows .. 269
 6.2.1. Introduction .. 269
 6.2.2. Bernoulli’s second theorem 269
 6.2.3. Flow of compressible inviscid fluid 270
 6.2.4. Nature of equations in inviscid flows 271
 6.2.5. Elementary solutions in irrotational flows 273
 6.2.6. Surface waves in shallow water 284
 6.3. Orders of magnitude .. 288
 6.3.1. Introduction and discussion of a simple example 288
 6.3.2. Obtaining approximate values of a solution 291
 6.4. Small parameters and perturbation phenomena 296
 6.4.1. Introduction .. 296
 6.4.2. Regular perturbation 296
 6.4.3. Singular perturbations 305
 6.5. Quasi-1D flows .. 309
 6.5.1. General properties 309
 6.5.2. Flows in pipes .. 314
 6.5.3. The boundary layer in steady flow 319
 6.6. Unsteady flows and steady flows 327
 6.6.1. Introduction .. 327
 6.6.2. The existence of steady flows 328
 6.6.3. Transitional regime and permanent solution 330
 6.6.4. Non-existence of a steady solution 334
Chapter 7. Measurement, Representation and Analysis of Temporal Signals

- **7.1. Introduction and position of the problem** ... 339
- **7.2. Measurement and experimental data in flows** 340
 - 7.2.1. Introduction .. 340
 - 7.2.2. Measurement of pressure ... 341
 - 7.2.3. Anemometric measurements .. 342
 - 7.2.4. Temperature measurements .. 346
 - 7.2.5. Measurements of concentration ... 347
 - 7.2.6. Fields of quantities and global measurements 347
 - 7.2.7. Errors and uncertainties of measurements 351
- **7.3. Representation of signals** ... 357
 - 7.3.1. Objectives of continuous signal representation 357
 - 7.3.2. Analytical representation ... 360
 - 7.3.3. Signal decomposition on the basis of functions; series and elementary solutions ... 361
 - 7.3.4. Integral transforms ... 363
 - 7.3.5. Time-frequency (or timescale) representations 374
 - 7.3.6. Discretized signals .. 381
 - 7.3.7. Data compression .. 385
- **7.4. Choice of representation and obtaining pertinent information** 389
 - 7.4.1. Introduction .. 389
 - 7.4.2. An example: analysis of sound ... 390
 - 7.4.3. Analysis of musical signals ... 393
 - 7.4.4. Signal analysis in aero-energetics .. 402

Chapter 8. Thermal Systems and Models

- **8.1. Overview of models** ... 405
 - 8.1.1. Introduction and definitions .. 405
 - 8.1.2. Modeling by state representation and choice of variables 408
 - 8.1.3. External representation .. 410
 - 8.1.4. Command models .. 411
- **8.2. Thermodynamics and state representation** 412
 - 8.2.1. General principles of modeling ... 412
 - 8.2.2. Linear time-invariant system (LTIS) ... 420
- **8.3. Modeling linear invariant thermal systems** 422
 - 8.3.1. Modeling discrete systems ... 422
 - 8.3.2. Thermal models in continuous media ... 431
- **8.4. External representation of linear invariant systems** 446
 - 8.4.1. Overview ... 446
 - 8.4.2. External description of linear invariant systems 446
- **8.5. Parametric models** ... 451
 - 8.5.1. Definition of model parameters ... 451
 - 8.5.2. Established regimes of linear invariant systems 453
Preface

The study of fluid mechanics and transfer phenomena in flows involves the association of difficulties which are encountered in different disciplines: thermodynamics, mechanics, thermal conduction, diffusion, chemical reactions, etc. This book is not intended to be an encyclopaedia, and we will thus not endeavour to cover all of the aforementioned disciplines in a detailed fashion. The main objective of the text is to present the study of the movement of fluids and the main consequences in terms of the transfer of mass and heat. The book is the result of many years of teaching and research, both theoretical and applied, in scientific domains which are often considered separately. In effect, the development of new disciplines which are at the same time specialized and universal was very much a characteristic of science in the 20th century. Thus, signal processing, system analysis, numerical analysis, etc. are all autonomous disciplines and indispensable means for students, engineers or researchers working in the domain of fluid mechanics and energetics. In the same way, various domains such as the design of chemical reactors, the study of the stars and meteorology require a solid knowledge of fluid mechanics in addition to that of their specific topics.

This book is primarily aimed at students, engineers and researchers in fluid mechanics and energetics. However, we feel that it can be useful for people working in other disciplines, even if the reading of some of the more theoretical and specialized chapters may be dispensable in this case. The science and technology of the first half of the 20th century was heavily rooted in classical mechanics, with concepts and methods which relied on algebra and differential and integral calculus, these terms being taken into account in the sense they were used at that time. Furthermore, scientific thought was fundamentally deterministic during this period, even if the existence of games of chance using mechanical devices (dice, roulette, etc.) seemed far from the philosophy of science or Cauchy’s theorem. Each time has
its concepts, which are based on the current state of knowledge, and the science of fluid mechanics was reduced for the most part to semi-empirical engineering formulae and to particular analytical solutions. Between the 1920s and the 1950s, our ideas on boundary layers and hydrodynamic stability were progressively elucidated. Studies of turbulence, which began in the 1920s from a conceptual statistical point of view, have really only made further progress in the 1970s, with the writing of the balance equations using turbulence models with a physical basis. This progress remains quite modest, however, considering the immensity of the task which remains.

It should be noted that certain disciplines have seen a spectacular renewal since the 1970s for two main reasons: on the one hand, the development of information technology has provided formidable computation and experimental methods, and on the other hand, multidisciplinary problems have arisen from industrial necessities. Acoustics is a typical example: many problems of propagation had been solved in the 1950s-1960s and those which were not made only very slow progress. Physics focused on other fundamental, more promising sectors (semiconductors, properties of matter, etc.). However, in the face of a need to provide practical solutions to industrial problems (sound generated by fluid flow, the development of ultra-sound equipment, etc.), acoustics became an engineering science in the 1970s. Acoustics is indeed a domain of compressible fluid mechanics and it will constitute an integral part of our treatment of the subject.

Parallel to this, systems became an object of study in themselves (automatic control) and the possibilities of study and understanding of the complexity progressed (signal processing, modeling of systems with large numbers of variables, etc.). Determinism itself is now seen in a more modest light: it suffices to remember the variable level of our ambitions with regard to meteorological prediction in the last 30 years to see that we have not yet arrived at a point where we have a definite set of concepts. Meteorological phenomena are largely governed by fluid mechanics.

The conception of this book results from the preceding observations. The author refuses to get into the argument which consists of saying that the time of analytical solutions has passed and that numerical simulation will solve all our problems. The reality is clearly more subtle than this: analytical solution in the broad sense, that is, the obtaining of results derived from reasoning and mathematical concepts, is the basis of physical concepts. Computations performed by computers by themselves cannot provide any more insight than an experiment, although both must be performed with great care. The state of knowledge and of understanding of mechanisms varies depending on the domain studied. In particular, the science of turbulence is still at a somewhat embryonic stage, and the mystery of turbulent solutions of the Navier-Stokes equations is far from being thoroughly cleared up.
We are still at the stage of Galileo who attempted to understand mechanics without the ideas of differential calculus. Nobody can today say precisely what are the difficulties to be solved, and the time which will be required for their resolution (10 years, a century or 10 centuries). We will therefore present the state of our knowledge in the current scientific context by also considering some of the accompanying disciplines (thermodynamics, ideas related to partial differential equations, signal processing, system analysis) which are directly useful to the concepts, modeling, experiments and applications in fluid mechanics and energetics of flows. We will not cover specific combustion phenomena, limiting ourselves to a few simplified cases of physico-chemical reactions.

This book covers the necessary fundamentals for the study and understanding of the specific concepts and general properties of flows: the establishment and discussion of the balance equations of extensive quantities in fluid motions, the transport of these quantities by convection, wave-propagation or diffusion. These physical concepts are issued from the comprehension of theoretical notions associated with equations, such as characteristic curves or surfaces, perturbation methods, modal developments (Fourier series, etc.) and integral transforms, model reduction, etc. These mathematical aspects are either consequences of properties of partial differential equations or derived from other disciplines such as signal processing and system analysis, whose impact is important in every scientific or technological domain. They are discussed and illustrated by some elementary problems of fluid mechanics and thermal conduction, including measurement methods and experimental data processing This book is an introduction to the study of more specialized topics of fluid flow and transfer phenomena encountered in different domains of application: incompressible or compressible flow, dynamic and thermal boundary layers, natural or mixed convection, 3D boundary layers, physico-chemical reactions in flows, acoustics in flows, aerodynamic sound, thermoacoustics, etc.

Chapter 1 is devoted to a synthetic presentation of thermodynamics. After recalling the basics of the representation of material systems, thermostatics is covered in an axiomatic fashion which avoids the use of differential formulations and which allows for a simplified presentation of classical results. Taking entropy dynamics as a starting point, the thermodynamics of non-equilibrium states is then discussed using simple examples with phenomenological laws of linear thermodynamics.

The continuous medium at rest is obtained by taking the limit of discrete systems in Chapter 2. The exchange of extensive quantities is modeled by means of flux densities, and irreversible thermodynamics leads to the diffusion equations. Some reminders of fluid statics are given. We then discuss the difficulties specific to the diffusion of matter.