The Coloration of Wool and other Keratin Fibres
Current and future titles in the Society of Dyers and Colourists – John Wiley Series

Published

The Coloration of Wool and other Keratin Fibres
David M. Lewis and John A. Rippon

Forthcoming

Natural Dyeing for Textiles: A Guide Book for Professionals
Debanjali Banerjee

Colour for the Design Industry
Vien Cheung
The Coloration of Wool and other Keratin Fibres

Edited by

DAVID M. LEWIS
Department of Colour Science, University of Leeds, UK

and

JOHN A. RIPPON
CSIRO Materials Science and Engineering, Australia

Published in association with the Society of Dyers and Colourists
Series Editor: Andrew Filarowski

WILEY
Contents

List of Contributors xiii
Society of Dyers and Colourists xv
Preface xvii

1 The Structure of Wool 1
 John A. Rippon
 1.1 Introduction 1
 1.2 Composition of Wool 2
 1.3 Chemical Structure of Wool 5
 1.3.1 General Chemical Structure of Proteins 5
 1.3.2 Amino Acid Composition of Wool 6
 1.3.3 Arrangement of Amino Acids in Wool 8
 1.3.4 The Structure of Wool Proteins 11
 1.3.5 Wool Lipids 13
 1.4 Morphological Structure of Wool 14
 1.4.1 The Cuticle and the Fibre Surface 16
 1.4.2 The Cortex 23
 1.4.3 The Cell Membrane Complex 27
 1.5 Chemical Reactivity of Wool 32
 1.6 Damage in Wool Dyeing 32
 1.6.1 Nonkeratinous Proteins and Damage in Dyeing 33
 1.6.2 Influence of Dyebath pH on Fibre Damage 34
 1.7 Conclusion 35
 References 35

2 The Chemical and Physical Basis for Wool Dyeing 43
 John A. Rippon
 2.1 Introduction 43
 2.2 The Chemical Basis for Wool Dyeing 43
 2.2.1 The Wool–Water System 44
 2.2.2 The Amphoteric Nature of Wool and Dyeing Behaviour 44
 2.2.3 Classical Theories of Wool Dyeing 46
 2.2.4 Modern Theories of Wool Dyeing 49
 2.3 Standard Affinity and Heat of Dyeing 50
vi Contents

2.4 Classification of Dyes Used for Wool 52
2.5 Dye Aggregation 55
2.6 The Physical Basis for Wool Dyeing: The Role of Fibre Structure 60
 2.6.1 Diffusion of Dyes 60
 2.6.2 Pathways of Dye Diffusion into Wool 61
2.7 Effect of Chemical Modifications on Dyeing 66
 2.7.1 Chlorination 66
 2.7.2 Plasma Treatment 67
 2.7.3 Differential Dyeing 68
2.8 Conclusion 68
References 69

3 The Role of Auxiliaries in the Dyeing of Wool and other Keratin Fibres 75
Arthur C. Welham

3.1 Introduction 75
3.2 Surface Activity of Wool-Dyeing Auxiliaries 76
 3.2.1 Anionic Auxiliaries 76
 3.2.2 Cationic Auxiliaries 77
 3.2.3 Ethoxylated Nonionic and Cationic Auxiliaries 78
 3.2.4 Amphoteric Auxiliaries 80
 3.2.5 Other Auxiliaries 81
3.3 Brightening Agents 81
3.4 Levelling Agents 82
 3.4.1 Material Faults 83
 3.4.2 Dyeing and Processing Faults 83
 3.4.3 Testing the Action of Levelling Agents 85
 3.4.4 Product Selection 86
 3.4.5 Coverage of Skittery or Tippy-Dyeing Wool 86
3.5 Restraining and Reserving Agents in Wool Blend Dyeing 88
3.6 Antiprecipitants 89
3.7 Wool Protective Agents 89
3.8 Low-Temperature Dyeing 90
3.9 Correction of Faulty Dyeings 92
3.10 Aftertreatments to Improve Wet Fastness 93
3.11 Effluent Control in Chrome Dyeing 94
3.12 Antifrosting Agents 95
3.13 Antisetting Agents 95
3.14 Sequestering Agents 96
3.15 Conclusions 96
References 97

4 Ancillary Processes in Wool Dyeing 99
David M. Lewis

4.1 Introduction 99
4.2 Wool Scouring 99
4.3 Wool Carbonising 100
4.4 Shrink-Resist Treatments 102
 4.4.1 Top Shrink-Resist Processes 102
 4.4.2 Garment Shrink-Resist Treatments 105
 4.4.3 Fabric Shrink-Resist Treatments 106
 4.4.4 Miscellaneous Developments 107
 4.4.5 Colour-Fastness Requirements for Machine-Washable Wool 108
4.5 Insect-Resist Treatments 108
 4.5.1 Insect Pests 108
 4.5.2 Insect-Resist Agents 109
 4.5.3 Application Methods for IR Agents 113
4.6 Flame-Retardant Treatments 115
4.7 Antisetting Agents 116
 4.7.1 The Role of Oxidants in Preventing Setting in Dyeing 118
 4.7.2 The Role of Electrophilic Reagents in Controlling Setting in Dyeing 119
4.8 Fibre Arylating Agents (FAA) 120
References 126

5 Bleaching and Whitening of Wool: Photostability of Whites 131
 Keith R. Millington
 5.1 Introduction 131
 5.2 Wool Colour 132
 5.2.1 Measuring Wool Colour 132
 5.2.2 Improving Wool Colour by Selection 134
 5.2.3 Improving Colour in the Scour 134
 5.2.4 Nonscourable Yellowing 135
 5.2.5 Wool Colour Compared with Cotton and Synthetics 135
 5.3 Wool Bleaching 138
 5.3.1 Oxidative Bleaching 138
 5.3.2 Reductive Bleaching 139
 5.3.3 Double (or Full) Bleaching 140
 5.3.4 Bleaching of Pigmented Wools 140
 5.3.5 Bleaching in the Dyebath 140
 5.3.6 Biobleaching of Wool Using Enzymes 142
 5.3.7 Activated Peroxide Bleaching 143
 5.3.8 Catalytic Peroxide Bleaching 144
 5.3.9 Novel Bleaching Methods for Wool 144
 5.4 Fluorescent Whitening of Wool 144
 5.5 Photostability of Wool 145
 5.5.1 Mechanism of Wool Photoyellowing 148
 5.5.2 Mechanism of Photoyellowing of Fluorescent Whitened Wool 149
 5.5.3 Methods for Improving Photostability 151
References 153
6 Wool-dyeing Machinery

Jamie A. Hawkes and Paul Hamilton

6.1 Introduction

6.2 Top Dyeing
 6.2.1 Longclose (UK) Large Bump Tops
 6.2.2 Obem Big Form
 6.2.3 Vigoreux Printing

6.3 Loose Stock Dyeing
 6.3.1 Continuous Dyeing of Loose Stock

6.4 Hank-Dyeing Yarn
 6.4.1 Carpet Yarn
 6.4.2 Hand-Knitting and Machine-Knitting Yarn
 6.4.3 Robotic Handling
 6.4.4 Space Dyeing of Yarn

6.5 Yarn Package Dyeing
 6.5.1 Package Preparation
 6.5.2 Machinery

6.6 Piece Dyeing
 6.6.1 Jet and Overflow Dyeing
 6.6.2 Beam Dyeing

6.7 Garment Dyeing

6.8 Carpet Piece Dyeing

6.9 Drying
 6.9.1 Mechanical Moisture Removal
 6.9.2 Thermal Moisture Removal

6.10 Dyehouse Automation
 6.10.1 Dyehouse Control Systems
 6.10.2 Factory Management Systems
 6.10.3 Process Control
 6.10.4 Effluent Control Systems
 6.10.5 Colour Measurement

6.11 Laboratory Dyeing
 6.11.1 Tops, Loose Stock, Hanks and Package Yarn
 6.11.2 Piece Dyeing
 6.11.3 Garment Dyeing
 6.11.4 Laboratory Machine Control Systems

References

7 Dyeing Wool with Acid and Mordant Dyes

Peter A. Duffield

7.1 Introduction

7.2 Acid Dyes
 7.2.1 Acid Dye Subclassification
 7.2.2 Optimised Dye Ranges

7.3 Natural Dyes
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Mordant Dyes</td>
<td>214</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Chrome Dyeing Processes</td>
<td>216</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Theoretical Aspects</td>
<td>219</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Low-Chrome Dyeing</td>
<td>223</td>
</tr>
<tr>
<td>7.5</td>
<td>Specific Dyeing Methods</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>227</td>
</tr>
<tr>
<td>8</td>
<td>Dyeing Wool with Metal-complex Dyes</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Stephen M. Burkinshaw</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>229</td>
</tr>
<tr>
<td>8.2</td>
<td>Dye Structure</td>
<td>230</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Electronic Structure</td>
<td>232</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Colour and Light Fastness</td>
<td>235</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Stereochemistry and Isomerism</td>
<td>236</td>
</tr>
<tr>
<td>8.2.4</td>
<td>1:1 Metal-Complex Dyes</td>
<td>237</td>
</tr>
<tr>
<td>8.2.5</td>
<td>1:2 Metal-Complex Dyes</td>
<td>239</td>
</tr>
<tr>
<td>8.3</td>
<td>Dye Application</td>
<td>242</td>
</tr>
<tr>
<td>8.3.1</td>
<td>1:1 Metal-Complex Dyes</td>
<td>242</td>
</tr>
<tr>
<td>8.3.2</td>
<td>1:2 Metal-Complex Dyes</td>
<td>246</td>
</tr>
<tr>
<td>8.4</td>
<td>Environmental Aspects</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>248</td>
</tr>
<tr>
<td>9</td>
<td>Dyeing Wool with Reactive Dyes</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>David M. Lewis</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>9.2</td>
<td>Commercial Reactive Dyes for Wool</td>
<td>252</td>
</tr>
<tr>
<td>9.3</td>
<td>The Chemistry of Reactive Dyes</td>
<td>253</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Nucleophilic Substitution Reactions</td>
<td>253</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Michael Addition Reaction</td>
<td>253</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Specific Reactive Dyes for Wool</td>
<td>254</td>
</tr>
<tr>
<td>9.4</td>
<td>Application Procedures</td>
<td>260</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Auxiliary Agents</td>
<td>260</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Dyeing Processes Used with Reactive Dyes</td>
<td>261</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Effect of Reactive Dyes on Fibre Properties</td>
<td>276</td>
</tr>
<tr>
<td>9.5</td>
<td>Novel Reactive Dye Systems for Wool</td>
<td>281</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Maleinimides</td>
<td>281</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Isocyanate and Isothiocyanate Bisulphite Adducts</td>
<td>281</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Carboxymethyl Carbodithioate Dyes</td>
<td>282</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Trifunctional Reactive Dyes Prepared from Bis-(chloroethyl-sulphonylethyl)amine [P-3] Reaction with a DCT Dye</td>
<td>282</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Crosslinking Agents to Covalently Fix Acid Dyes to Wool</td>
<td>283</td>
</tr>
<tr>
<td>9.6</td>
<td>Identification of the Reaction Sites in the Fibre</td>
<td>285</td>
</tr>
<tr>
<td>9.7</td>
<td>Conclusions</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>287</td>
</tr>
</tbody>
</table>
10 Dyeing Wool Blends

David M. Lewis

10.1 Introduction 291
10.2 Wool/Cotton
 10.2.1 Dyeing of Cotton 293
 10.2.2 Exhaustion Dyeing of Wool/Cotton Blends 296
 10.2.3 Pad Dyeing of Wool/Cotton Blends 300
 10.2.4 Wool Damage during Dyeing 301
10.3 Amination of Cellulosic Fibres 303
10.4 Wool/Silk
 10.4.1 Dyeing of Silk 306
 10.4.2 Dyeing of Wool/Silk Blends 308
10.5 Wool/Nylon
 10.5.1 Dyeing of Nylon 310
 10.5.2 Dyeing of Wool/Nylon Blends 319
10.6 Wool/Polyester
 10.6.1 Dyeing of Polyester 323
 10.6.2 Dyeing of Wool/Polyester Blends 333
10.7 Wool/Acrylic
 10.7.1 Dyeing of Acrylic Fibres 342
 10.7.2 Dyeing of Wool/Acrylic Blends 348
10.8 Conclusions 351
References 352

11 The Coloration of Human Hair

Robert M. Christie and Olivier J.X. Morel

11.1 Introduction 357
11.2 Structure and Morphology of Human Hair 359
11.3 Natural Colour of Hair 360
11.4 Physical Chemistry of Hair Dyeing 364
11.5 Toxicology of Hair Dyes 365
11.6 Oxidative Hair Coloration 366
11.7 Alternative Approaches to Permanent Hair Dyeing 369
11.8 Nonoxidative Hair Dyeing 375
11.9 Conclusion 386
References 387

12 Wool Printing

Peter J. Broadbent and Muriel L.A. Rigout

12.1 Introduction 393
12.2 Preparation for Printing 394
 12.2.1 Oxidative Processes 394
 12.2.2 Polymer Treatments 396
 12.2.3 Plasma Treatments 397
 12.2.4 Other Methods of Preparation for Printing 398
12.3 Direct Printing 399
 12.3.1 Machinery 399
 12.3.2 Dye Selection and Print Recipes 399
 12.3.3 Steaming 402
 12.3.4 Washing and Aftertreatment 404
12.4 Discharge Printing 405
 12.4.1 Ground Shades 405
 12.4.2 Discharge Agents 405
 12.4.3 Illuminating Dyes 407
 12.4.4 Printing and Fixation 407
12.5 Resist Printing 408
 12.5.1 Chemical Resist Processes 409
 12.5.2 Mechanical/Chemical Resist Processes 411
 12.5.3 Reactive-Under-Reactive Resist 412
12.6 Digital Printing 412
 12.6.1 Machinery 413
 12.6.2 Ink Formulation 413
 12.6.3 Fabric Pretreatment 415
 12.6.4 Fixation 417
 12.6.5 Wash-Off 417
12.7 Wool Blends 418
 12.7.1 Wool/Polyester 419
 12.7.2 Wool/Cotton 419
 12.7.3 Wool/Acrylic 420
12.8 Cold Print Batch 420
12.9 Transfer Printing 421
 12.9.1 Wet or ‘Migration’ Transfer Printing 421
 12.9.2 Sublimation Transfer Printing 422
 12.9.3 Benzoylated Wool 424
12.10 Novel Effects 425
 12.10.1 Burn-Out (devorée) Printing 425
 12.10.2 Sculptured Effects 425
References 426

Index 431
List of Contributors

Peter J. Broadbent, Colour Chemistry Consultant, UK

Stephen M. Burkinshaw, School of Design, University of Leeds, UK

Robert M. Christie, School of Textiles & Design, Heriot-Watt University, UK

Peter A. Duffield, Retired; Global Textile Associates Ltd, UK

Paul Hamilton, Bulmer & Lumb Group Limited, UK

Jamie A. Hawkes, Perachem Limited, UK

David M. Lewis, Department of Colour Science, University of Leeds, UK

Keith R. Millington, CSIRO Materials Science and Engineering, Geelong, Victoria, 3216, Australia
Co-operative Research Centre for Sheep Industry Innovation, University of New England, NSW, 2800, Australia

Olivier J.X. Morel, Xennia Technology Ltd., UK

Muriel L.A. Rigout, School of Materials, University of Manchester, UK

John A. Rippon, CSIRO Materials Science and Engineering, Geelong, Victoria, 3216, Australia

Arthur C. Welham, The Dyehouse Doctor Ltd, UK