MANAGING POWER ELECTRONICS

VLSI and DSP-Driven Computer Systems

Dr. Nazzareno Rossetti
Managing Power Electronics
MANAGING POWER ELECTRONICS

VLSI and DSP-Driven Computer Systems

Dr. Nazzareno Rossetti
To Ash and Ty, my two pearls
This Page Intentionally Left Blank
Contents

Foreword ... xv
Preface ... xvii

1 Introduction ... 1
 1.1 Technology Landscape 1
 1.2 A Young Industry after All 4

2 Power Management Technologies .. 9
 2.1 Introduction 9
 2.2 Integrated Circuits Power Technology:
 Processing and Packaging 10
 Diodes and Bipolar Transistors 10
 Metal-Oxide-Semiconductor (MOS) Transistors 15
 DMOS Transistors 16
 CMOS Transistors 17
 Passive Components 17
 A Monolithic Process Example 18
 Packaging 18
 2.3 Discrete Power Technology: Processing and Packaging 20
 From Wall to Board 20
 Power MOSFET Technology Basics 21
 Package Technologies 23
 2.4 Ongoing Trends 24
Part 1 Analog Circuits 26

3.1 Transistors 26
 NPN 26
 PNP 27
 Trans-Conductance 27
 Transistor as Transfer-Resistor 28
 Transistor Equations 29
 MOS versus Bipolar Transistors 30

3.2 Elementary Circuits 32
 Current Mirror 32
 Current Source 32
 Differential Input Stage 33
 Differential to Single Input Stage 34
 Buffer 35

3.3 Operational Amplifier (Opamp) 35
 Inverting and Non-Inverting Inputs 36
 Rail to Rail Output Operation 37
 CMOS Opamp 37
 Opamp Symbol and Configurations 38
 DC Open Loop Gain 38
 AC Open Loop Gain 39

3.4 Voltage Reference 41
 Positive TC of ΔV_{BE} 41
 Negative TC of V_{BE} 41
 Build a ΔV_{BE} 42
 Building a Voltage Reference 43
 Fractional Band-Gap Voltage Reference 44

3.5 Voltage Regulator 46

3.6 Linear versus Switching 48

3.7 Switching Regulators 49

3.8 Buck Converters 49
 Switching Regulator Power Train 50
 Output Capacitor 52
 Electrolytic Capacitors and Transient Response 52
 Ceramic Capacitors 53
 Losses in the Power Train 55
 The Analog Modulator 56
 Driver 57
Switching Regulator Block Diagram 58
Switching Regulator Control Loop 58
Input Filter 61
Input Inductor L_{IN} 61
Input Capacitor 62
Current Mode 63

3.9 Flyback Converters 64

Part II Digital Circuits 66

3.10 Logic Functions 67
NAND Gate 67
Set-Reset R Flip-Flop 67
Current Mode with Anti-Bouncing Flip-Flop 68

4 DC-DC Conversion Architectures... 71

4.1 Valley Control Architecture 71
Peak and Valley Control Architectures 72
Transient Response of Each System 75
Valley Control with FAN5093 76
Conclusion 79

4.2 Monolithic Buck Converter 79
A New Design Methodology for Faster Time to Market 79
The Design Cycle 80
The FAN5301 81
The Behavioral Model 82
Light Load Operation 82
Full Load Operation 83
Over-Current 83
One Shot 83
Comparator 83
Results 84
Timing 86
Conclusion 87

4.3 Active Clamp 87
Introduction 87
Application 88
Test Results 94
Comments 96
4.4 Battery Charging Techniques:
 New Solutions for Notebook Battery Chargers 97
 High Efficiency 97
 The Smart Battery System 98
 Data Conversion 98
 Fast Charge 98
 Battery Charger System 99

4.5 Digital Power 100
 Control Algorithm of Modern Switching Regulators:
 Analog or Digital? 100
 Fast Switchmode Regulators and Digital Control 103

5 Offline (AC-DC) Architectures .. 107

5.1 Offline Power Architectures 107
 Introduction 107
 Offline Control 108
 PFC Architecture 111
 DC-DC Conversion Down to Low Voltage 116
 Future Trends 118

5.2 Power AC Adapter: Thermal and Electrical Design 119
 Introduction: The Challenge 119
 AC Adapter Power Dissipation 119
 AC Adapter Case Temperature 120
 Active and No-load Operation 121
 Development of a Solution 121
 Conclusion 124

6 Power Management of Ultraportable Devices 125

6.1 Power Management of Wireless Computing and
 Communications Devices 125
 The Wireless Landscape 125
 Power Management Technologies for Wireless 126
 Cellular Telephones 127
 Wireless Handheld 129
 Charge 131
 Protection and Fuel Gauging 131
 Convergence of Cellular Telephone and Handheld 132
 Future Architectures 133
6.2 Power Management in Wireless Telephones:
 Subsystem Design Requirements 134
 Smart Phone Subsystems 134
 Display Board 135
 Keypad Board 136
 Main Board 136
 Battery Pack 137
 AC Adapter 138

6.3 Powering Feature-Rich Handsets 139
 Growing Complexity and Shrinking Cycle Time 139
 Power Management Unit 140
 Low Dropouts (LDOs) 141

6.4 More on Power Management Units in Cell Phones 142
 Barriers to Up-Integration 143
 PMU Building Blocks 143
 CPU Regulator 144
 Low Dropout Block 145
 The Microcontroller 146
 The Microcontroller Die 147
 Processing Requirements 148
 Microcontroller-Driven Illumination System 148

6.5 Color Displays and Cameras Increase Demand on Power Sources and Management 150
 Digital Still Camera 151
 Camera Phones 152
 Power Minimization 155
 Untethered Operation 155

7 Computing and Communications Systems 157

7.1 Power Management of Desktop and Notebook Computers 157
 Power Management System Solution for a
 Pentium III Desktop System 158
 Power Management System Solution for
 Pentium IV Systems (Desktop and Notebook) 160
 Desktop Systems 162
 Powering the Silver Box 168
 Notebook Systems 168
 Future Power Trends 173
7.2 Computing and Data Communications Converge at the Point of Load 174
 The Proliferation of Power Supplies 174
 Telecom Power Distribution 174
 Computing Power Distribution 175
 Multiphase Buck Converter for POLs and VRMs 176
 Conclusion 177

7.3 Efficient Power Management ICs Tailored for DDR-SDRAM Memories 178
 Introduction 178
 DDR Power Management Architecture 178
 Worst Case Current Consumption 179
 Average Power Consumption 180
 Transient Operation 181
 Standby Operation 181
 Linear versus Switching 182
 Second Generation DDR—DDR2 182
 FAN5236 for DDR and DDR2 Memories 183
 Future Trends 185

7.4 Power Management of Digital Set-Top Boxes 185
 Set-Top Box Architecture 185
 Power Management 186
 High Power Set-Top Boxes 186
 Low Power Set-Top Boxes 190
 Conclusion 192

7.5 Power Conversion for the Data Communications Market 192
 Introduction 192
 Current Environment with Separate Networks 193
 Migration to Converged Voice/Data/Video IP 193
 Telecom —48 V DC Power Distribution 193
 Datacom AC Power Distribution 194
 Conclusion 198

8 Future Directions and Special Topics 199

8.1 Beyond Productivity and Toys:
 Designing ICs for the Health Care Market 199

8.2 Power Management Protocols Help Save Energy 200
 ACPI 201
 Motherboard (DC-DC) Voltage Regulators 201
Contents

Offline (AC-DC) Voltage Regulators with Power Factor Correction (PFC) 202
Green Power (Energy Management) 203
New Low Power System Requirements 204
Conclusion 205

8.3 Heat Disposal in Electronics Applications 205
 Active versus Passive Cooling 205
 Limits of Passive Cooling 206
 Active Cooling 206
 Active Cooling—Yes or No? 207
 Active Cooling Implementation 209

8.4 Web Based Design Tools 211
 The Tools on the Web 211

8.5 Motor Drivers for Portable Electronic Appliances 213
 Introduction 213
 Camera Basics 213
 Motors and Motor Drivers 214
 Driving Implementation 214
 Efficiency 216
 DSC Power Consumption 216
 Conclusion 216

A Fairchild Specifications for FAN5093.........................219
B Fairchild Specifications for FAN4803.........................237
C Fairchild Specifications for FSD210 and FSD200251
D Fairchild Specifications for FAN5307.........................271
E Fairchild Specifications for ACE1502.........................285
F Fairchild Specifications for FAN5236.........................319
G Fairchild Specifications for FAN8702.........................341

Glossary ...359

Further Reading...371

Index..373