Edited by
Klaus K. Unger, Nobuo Tanaka, and Egidijus Machtejevas

Monolithic Silicas in Separation Science

Concepts, Syntheses, Characterization, Modeling and Applications
Related Titles

Fritz, J. S., Gjerde, D. T.
Ion Chromatography
2009
ISBN: 978-3-527-32052-3

Miller, J. M.
Chromatography
Concepts and Contrasts, 2nd Ed.
2009

Cohen, S. A., Schure, M. R. (eds.)
Multidimensional Liquid Chromatography
Theory and Applications in Industrial Chemistry and the Life Sciences
2008

Forciniti, D.
Industrial Bioseparations
Principles and Practice
2007

Barry, E. F., Grob, R. L.
Columns for Gas Chromatography
Performance and Selection
2007
ISBN: 978-0-471-74043-8

Hahn-Deinstrop, E.
Applied Thin-Layer Chromatography
Best Practice and Avoidance of Mistakes
2007
ISBN: 978-3-527-31553-6

Pyell, U. (ed.)
Electrokinetic Chromatography
Theory, Instrumentation and Applications
2006
ISBN: 978-0-470-87102-7

Cox, G. B. (ed.)
Preparative Enantioselective Chromatography
2005
Edited by
Klaus K. Unger, Nobuo Tanaka, and Egidijus Machtejevas

Monolithic Silicas in Separation Science

Concepts, Syntheses, Characterization, Modeling and Applications
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting Toppan Best-set Premedia Limited, Hong Kong
Printing and Binding Fabulous Printers Pte Ltd, Singapore
Cover Design Formgeber, Eppelheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-32575-7
Contents

Preface XIII
List of Contributors XV

1 The Basic Idea and the Drivers 1
Nobuo Tanaka and Klaus K. Unger
1.1 Definitions 1
1.2 Monoliths as Heterogeneous Catalysts 1
1.3 Monoliths in Chromatographic Separations 2
1.4 Conclusion and Perspectives 4
References 5

Part One Preparation 9

2 Synthesis Concepts and Preparation of Silica Monoliths 11
Kazuki Nakanishi
2.1 Introduction 11
2.2 Background and Concepts 12
2.2.1 Sol-Gel Reactions of Silica 12
2.2.2 Polymerization-Induced Phase Separation 14
2.2.3 Domain Formation by Phase Separation 15
2.2.4 Arresting Transient Structure within a Solidifying Network 17
2.2.5 Macropore Control 19
2.2.6 Mesopore Control 21
2.3 Synthesis of Silica Monoliths 21
2.3.1 Silica Source and Catalyst 21
2.3.2 Additives to Induce Phase Separation 22
2.3.3 Preparation Procedure for Bulk Monolith 24
2.3.3.1 Dissolution of PEO in Acidic Water 25
2.3.3.2 Addition of TMOS for Hydrolysis 25
2.3.3.3 Transferring the Solution to a Mold 25
2.3.3.4 Gelation and Aging 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Preparation Procedure for Capillary Monolith</td>
<td>26</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Aging of Wet Monolith to Tailor Mesopores</td>
<td>27</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Drying and Heat Treatment</td>
<td>28</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Miscellaneous Factors for Better Reproducibility</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Monolithic Columns Prepared in the Laboratory</td>
<td>29</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Epoxy-Clad Columns</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Capillary Columns</td>
<td>30</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Other Types</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>31</td>
</tr>
</tbody>
</table>

References 31

3 Preparation and Properties of Various Types of Monolithic Silica

Stationary Phases for Reversed-Phase, Hydrophilic Interaction, and Ion-Exchange Chromatography Based on Polymer-Coated Materials 35

Oscar Núñez and Tohru Ikegami

3.1 Stationary Phases for Reversed-Phase Chromatography 35
3.2 Stationary Phases for Hydrophilic-Interaction Chromatography Separations 38
3.3 Stationary Phases for Ion-Exchange Separations 42
3.4 Advantages of Polymer-Coated Monolithic Silica Columns 43

References 45

Part Two Characterization and Modeling 47

4 Characterization of the Pore Structure of Monolithic Silicas 49

Romas Skudas, Matthias Thommes, and Klaus K. Unger

4.1 Monolithic Silicas 49
4.2 General Aspects Describing Porous Materials 50
4.3 Characterization Methods of the Pore Structure of Monolithic Silicas 53
4.3.1 Mercury Intrusion-Extrusion 53
4.3.2 Inverse Size-Exclusion Chromatography 60
4.3.3 Nitrogen Sorption 64
4.3.4 Liquid Permeation 67
4.3.5 Microscopy and Image Analysis 70
4.4 Comparison of the Silica Monolith Mesopore-Characterization Data 73
4.5 Comparison of the Silica Monolith Flow-Through Pore-Characterization Data 74

References 75

5 Microscopic Characterizations 81

Haruko Saito, Kazuyoshi Kanamori, and Kazuki Nakanishi

5.1 Introduction 81
5.2 Preparation of Macroporous Silica Monolith 82
5.3 Laser Scanning Confocal Microscope Observation 83
5.4 Image Processing 84
5.5 Fundamental Parameters 84
5.5.1 Porosity 85
5.5.2 Surface Area 86
5.5.3 Characteristic Wavelength 86
5.5.4 Macropore Size and Skeleton Thickness 89
5.5.5 Chord Length 90
5.5.6 Mean Curvature and Gaussian Curvature 91
5.5.7 Curvature Distributions 93
5.5.7.1 Comparison between Different Porosities 93
5.5.7.2 Comparison between Different Macropore Sizes 94
5.6 Three-Dimensional Observation of Deformations in Confined Geometry 95
5.6.1 Synthesis and Characters of Organic–Inorganic Hybrid Monoliths 95
5.6.2 Deformed Macroporous Structures between Plates in MF System 96
5.6.3 Deformed Macroporous Structures between Plates in MM System 99
References 102

6 Modeling Chromatographic Band Broadening in Monolithic Columns 105
Frederik Detobel and Gert Desmet
6.1 Introduction 105
6.2 The General Plate-Height Model 106
6.2.1 Meaning of k'', u_i and K_p 107
6.2.2 Expressions for H_{ax} 108
6.2.3 Estimation of D_{mol} and D_{ske} 109
6.2.4 Expressions for k_{tp} and $k_{f,skel}$ 110
6.2.5 Selection of the Characteristic Reference Lengths 111
6.2.6 Complete Plate-Height Equation 113
6.3 Use of the General Plate-Height Model to Predict Band Broadening in TSM Structures 114
6.3.1 Nonporous Skeleton Case 115
6.3.2 Porous Skeleton Case 116
6.4 Conclusion 120
Acknowledgments 121
Symbols 121
Greek Symbols 122
Subscripts 122
References 122
7 Comparison of the Performance of Particle-Packed and Monolithic Columns in High-Performance Liquid Chromatography

Georges Guiochon

7.1 Introduction 127
7.2 Basic Columns Properties 128
7.2.1 Total, External and Internal Column Porosity 129
7.2.1.1 Definition of the Total Column Porosity 129
7.2.1.2 Measurement of the Total Column Porosity 129
7.2.1.3 Definitions of the Column External and Internal Porosities 131
7.2.1.4 Measurement of the Column External and Internal Porosities 131
7.2.2 Column Permeability 132
7.2.2.1 Permeability of Packed Columns 132
7.2.2.2 Permeability of Monolithic Columns 132
7.2.3 Column Efficiency 135
7.2.3.1 The HETP Equation 136
7.2.3.2 Reduced HETP and Reduced Velocity 137
7.2.4 Column Impedance 137
7.3 Comparison of the Through-Pore Structures and Related Properties 138
7.3.1 Porosity and Through-Pore Structure 138
7.3.1.1 External Porosity of Packed and Monolithic Columns 138
7.3.1.2 Importance of the Size of the Through-Pores 139
7.3.1.3 Average Size of the Through-Pores in Packed Columns 139
7.3.1.4 Average Size of the Through-Pores of Monolithic Columns 140
7.3.2 Column Permeability 140
7.3.2.1 Permeability of Packed Columns 140
7.3.2.2 Permeability of Monolithic Columns 140
7.3.3 Column Radial Homogeneity 142
7.3.3.1 Radial Heterogeneity of Packed Columns 142
7.3.3.2 Radial Heterogeneity of Monolithic Columns 143
7.3.3.3 Consequences of Column Radial Heterogeneity 144
7.4 Thermodynamic Properties 144
7.4.1 Retention 144
7.4.1.1 Retention Factors 145
7.4.1.2 Reproducibility of Retention Factors and Isotherms 146
7.4.2 Column Loadability 146
7.5 Kinetic Properties and Column Efficiency 147
7.5.1 Axial Dispersion 147
7.5.2 Mass-Transfer Kinetics 148
7.5.3 Column Impedance 150
7.5.4 Kinetic Properties 151
7.6 Conclusions 151
Acknowledgments 153
Symbols 153
Greek Symbols 154
References 154

Part Three Applications 157

8 Quantitative Structure–Retention Relationships in Studies of Monolithic Materials 159
Roman Kaliszanz and Michał J. Markuszewski
8.1 Fundamentals of Quantitative Structure–Retention Relationships (QSRR) 159
8.2 Quantitative Relationships between Analyte Hydrophobicity and Retention on Monolithic Columns 163
8.3 QSRR Based on Structural Descriptors from Calculation Chemistry 166
8.4 LSER on Monolithic Columns 169
8.5 Concluding Remarks 171
References 171

9 Performance of Silica Monoliths for Basic Compounds. Silanol Activity 173
David V. McCalley
9.1 Introduction 173
9.2 Reproducibility of Commercial Monoliths for Analysis of Bases 174
9.3 Activity of Monoliths towards Basic Solutes 175
9.4 Contribution of Overload to Peak Shapes of Basic Solutes 180
9.5 Van Deemter Plots for Commercial Monoliths 180
9.6 Performance of Hybrid Capillary Silica Monoliths for Basic Compounds 183
9.7 Conclusions 186
References 187

10 Quality Control of Drugs 189
Mohammed Taha, Abdelkarem Abed, and Sami El Deeb
10.1 Introduction 189
10.2 Analysis of Pharmaceutics 189
10.3 Natural Products Analysis 190
10.4 Analysis Speed and Performance 191
10.5 Method Transfer 193
10.6 Separation of Complex Mixtures 196
10.7 Monolith Derivatives and Versatile Application 198
10.8 Summary and Conclusions 201
References 202
11 Monolithic Stationary Phases for Fast Ion Chromatography 207
Pavel N. Nesterenko and Paul R. Haddad
11.1 Fast Ion Chromatography 207
11.2 Historical Development of Fast Ion Chromatography 207
11.3 Advantages of the Bimodal Porous Structure of the Silica Monolith Matrix 210
11.4 Type and Properties of Silica Monolithic Columns Used in IC 212
11.5 Modification of Silica Monoliths for IC Separations 216
11.5.1 Bare-Silica Monoliths as Ion Exchangers 216
11.5.2 Coated Reversed-Phase Silica Monolithic Ion-Exchange Columns 217
11.5.3 Silica Monoliths with Covalently Bonded Ion-Exchange Groups 221
11.6 Operational Parameters 221
11.7 Analytical Applications 223
11.8 Future Work 225
References 226

12 Monolithic Chiral Stationary Phases for Liquid-Phase Enantioseparation Techniques 231
Bezhan Chankvetadze
12.1 Introduction 231
12.2 Organic Monolithic Materials for the Separation of Enantiomers 233
12.3 Silica-Based Monolithic Materials for the Separation of Enantiomers 235
12.3.1 Monolithic Silica Columns with Physically Adsorbed Chiral Selector 236
12.3.2 Monolithic Silica Columns with Covalently Attached Chiral Selector 237
12.4 Summary of the Present State-of-the-Art and Problems to be Solved in the Future 245
References 245

13 High-Speed and High-Efficiency Separations by Utilizing Monolithic Silica Capillary Columns 249
Takeshi Hara, Kosuke Miyamoto, Satoshi Makino, Shohei Miwa, Tohru Ikegami, Masayoshi Ohira, and Nobuo Tanaka
13.1 Introduction 249
13.2 Preparation of Monolithic Silica Capillary Columns 250
13.3 Properties of Monolithic Silica Capillary Columns 252
13.4 Monolithic Silica Capillary Columns for High-Efficiency Separations 254
13.4.1 Performance of Long Monolithic Silica Capillary Columns 254
13.4.2 Examples of High-Efficiency Separations 256
13.4.2.1 Isocratic Mode 256
13.4.3 Performance of Long Capillary Columns for Peptides in Gradient Mode 259
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5 Monolithic Silica Capillary Columns for High-Speed Separations</td>
<td>261</td>
</tr>
<tr>
<td>13.5.1 Monolithic Silica Columns Having Increased Phase Ratios</td>
<td>261</td>
</tr>
<tr>
<td>13.5.2 Performance of High-Speed Monolithic Silica Columns</td>
<td>265</td>
</tr>
<tr>
<td>13.5.3 Comparison of Performance with a Particle-Packed Column</td>
<td>266</td>
</tr>
<tr>
<td>13.6 Future Considerations</td>
<td>267</td>
</tr>
<tr>
<td>13.7 Conclusion</td>
<td>268</td>
</tr>
<tr>
<td>References</td>
<td>269</td>
</tr>
<tr>
<td>14 Silica Monolithic Columns and Mass Spectrometry</td>
<td>273</td>
</tr>
<tr>
<td>Keith Ashman</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>273</td>
</tr>
<tr>
<td>14.2 Offline Chromatography, LC MALDI MS</td>
<td>274</td>
</tr>
<tr>
<td>14.3 Online ESI LC/MS/MS for Proteomics and Selected Reaction Monitoring (SRM)</td>
<td>275</td>
</tr>
<tr>
<td>14.4 Online Reactors and Affinity Columns Coupled to Mass Spectrometry</td>
<td>278</td>
</tr>
<tr>
<td>14.5 Conclusion</td>
<td>279</td>
</tr>
<tr>
<td>References</td>
<td>280</td>
</tr>
<tr>
<td>15 Silica Monoliths for Small-Scale Purification of Drug-Discovery Compounds</td>
<td>285</td>
</tr>
<tr>
<td>Alfonso Espada, Cristina Anta, and Manuel Molina-Martín</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>285</td>
</tr>
<tr>
<td>15.2 Instrumental and Operating Considerations</td>
<td>286</td>
</tr>
<tr>
<td>15.2.1 Analytical Conditions</td>
<td>286</td>
</tr>
<tr>
<td>15.2.2 Preparative Conditions</td>
<td>287</td>
</tr>
<tr>
<td>15.3 Preparative Separations and Sample Loading</td>
<td>288</td>
</tr>
<tr>
<td>15.3.1 Semipreparative Monolithic 10 × 100 mm Column</td>
<td>288</td>
</tr>
<tr>
<td>15.3.2 Preparative Monolithic 25 × 100 mm Column</td>
<td>290</td>
</tr>
<tr>
<td>15.4 Purification of Drug-Discovery Compounds</td>
<td>292</td>
</tr>
<tr>
<td>15.5 Conclusions</td>
<td>294</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>295</td>
</tr>
<tr>
<td>References</td>
<td>295</td>
</tr>
<tr>
<td>16 Monolithic Silica Columns in Multidimensional LC-MS for Proteomics and Peptidomics</td>
<td>297</td>
</tr>
<tr>
<td>Egidijus Machtjejevas and Eglė Machtjejeviene</td>
<td></td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td>16.2 Liquid Chromatography as a Tool Box for Proteomics</td>
<td>300</td>
</tr>
<tr>
<td>16.3 Selectivity of Columns for MD-LC</td>
<td>303</td>
</tr>
<tr>
<td>16.4 Dimensions of Columns in MD-LC</td>
<td>305</td>
</tr>
<tr>
<td>16.5 Monolithic Silica Columns</td>
<td>307</td>
</tr>
<tr>
<td>16.6 Applications of Monolithic Silica in Proteomics—A Brief Survey</td>
<td>310</td>
</tr>
<tr>
<td>16.7 Summary and Conclusions</td>
<td>314</td>
</tr>
<tr>
<td>References</td>
<td>314</td>
</tr>
</tbody>
</table>
17 Silica Monoliths in Solid-Phase Extraction and Solid-Phase Microextraction 319
Zhi-Guo Shi, Li Xu, and Hian Kee Lee
17.1 Introduction 319
17.2 Extraction Process 320
17.3 Extraction Platforms 321
17.3.1 Online Extraction 321
17.3.2 Offline Extraction 322
17.4 Applications 322
17.4.1 SPE and SPME 322
17.4.1.1 Silica Monolith from Entrapped Particles 322
17.4.1.2 Silica Monolith from Direct Sol-Gel Strategy 327
17.4.2 Other Applications of Silica Monolith 332
17.5 Conclusion and Outlook 332
References 333

Index 335
Preface

One of the most prominent drivers in the field of separation science and technology is the search for novel and efficient materials as adsorbents to improve the mass transfer kinetics and to allow fast separations. While the major attention was directed to provide particle packed columns with smaller and smaller particles the idea to develop continuous beds based on silica monoliths was pioneered by Professor N. Soga and K. Nakanishi from Kyoto University, Japan, utilizing the template approach. It was a milestone in the development of silica monoliths when both researchers (NS and KN) had the splendid idea to introduce them as continuous beds in High Performance Liquid Chromatography (HPLC). In close collaboration with Professor K. Nakanishi, Dr Minakuchi and one of our co-editors (NT) performed the synthesis of such columns for HPLC. However, there was a serious limitation to apply monolithic silicas in 4 and 4.6 mm I.D. column format as the shrinkage of silica calling for a leak-tight and pressure stable cladding. This problem was finally solved by researchers (Dr K. Cabrera and Dr D. Lubda) from Merck KGaA, Darmstadt, Germany.

When my research group (KKU) became access to research samples from Merck, Darmstadt, at the mid of 1990s we were fascinated by the potential of silica monoliths as continuous beds in HPLC due to their flexibility in adjusting and controlling the morphology, pore structure and surface chemistry and thus enabling to optimize the chromatographic performance parameters. The second-generation monolithic silica columns just appearing seem to provide much higher performance than the first-generation columns commercialized in 2000.

The focus of Professor Tanaka’s group was the preparation and improvement of monolithic fused silica capillaries to generate high efficiency columns and to compare them with particle packed fused silica columns.

Professor Tanaka and Dr E. Machtejevas both could demonstrate the potential of such columns in various life science applications such as proteomics and peptidomics using multidimensional HPLC/MS.

After almost twenty years of extensive research and development in the field the three authors (KKU, NT and EM) became convinced that it is time to review the work under the various aspects of separation science.

The authors are jointly indebted to the division of performance and life science chemicals of Merck KGaA, Darmstadt, Germany, for the generous support and