Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment

Edited by

LUTZ EDLER
German Cancer Research Center, Germany

CHRISTOS P. KITSOS
Technological Educational Institute of Athens, Greece
Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment
WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Peter Bloomfield, Noel A. C. Cressie, Nicholas I. Fisher, Iain M. Johnstone, J. B. Kadane, Geert Molenberghs, Louise M. Ryan, David W. Scott, Adrian F. M. Smith, Jozef L. Teugels
Editors Emeriti: Vic Barnett, J. Stuart Hunter, David G. Kendall

A complete list of the titles in this series appears at the end of this volume
Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment

Edited by

LUTZ EDLER
German Cancer Research Center, Germany

CHRISTOS P. KITSOS
Technological Educational Institute of Athens, Greece

John Wiley & Sons, Ltd
To the memory all parents who leave before all thanks are given.

To my Father and Mother
who died from chronic disease.

To my Father and Mother
who both died from cancer.

L.E.

C.P.K
Contents

Contributors xix
Preface xxv
Introduction xxix

I CANCER AND HUMAN HEALTH RISK ASSESSMENT

Introductory remarks

1. **Principles of Cancer Risk Assessment: The Risk Assessment Paradigm**
 Vincent J. Cogliano

 1.1 The risk assessment paradigm 5
 1.2 Hazard identification 7
 1.3 Dose-response assessment 8
 1.3.1 Different objectives, different data sets, different approaches 8
 1.3.2 Extrapolations in dose-response assessment 9
 1.3.3 Safety assessment 11
 1.3.4 Modelling to estimate risk at low doses 14
 1.3.5 Uncertainty and human variation 21

II BIOLOGICAL ASPECTS OF CARCINOGENESIS

Introductory remarks

2. **Molecular Epidemiology in Cancer Research**
 Gerassimos Voutsinas, Anastasia Apostolidou and Natalia Spyrou

 2.1 Introduction 29
 2.2 From carcinogen exposure to cancer 30
2.3 Biomarkers 30
 2.3.1 Biomarkers of exposure 31
 2.3.2 Biomarkers of susceptibility 32
 2.3.3 Biomarkers of effect 33

2.4 Validation of biomarkers 33
 2.4.1 Study design 34
 2.4.2 Genetic and statistical analysis 34
 2.4.3 Sample size requirements 35
 2.4.4 Sources of potential bias 35

2.5 Factors influencing cancer risk 35
 2.5.1 Environmental factors 36
 2.5.2 Genetic factors 36
 2.5.3 Carcinogen metabolism 36
 2.5.4 DNA repair 37
 2.5.5 Cell cycle control 37
 2.5.6 Immune status 37

2.6 New tools in molecular epidemiology 38
 2.6.1 Microarrays and toxicogenomics 38
 2.6.2 Proteomics 39
 2.6.3 Promising directions for cancer diagnosis and cancer biomarker discovery 39

2.7 Conclusions 40

3. Genetic Polymorphisms in Metabolising Enzymes as Lung Cancer Risk Factors 43
 Angela Risch, Heike Dally and Lutz Edler

3.1 Introduction 43
 3.1.1 Studies investigating genetic polymorphisms as lung cancer risk factors 44

3.2 Methodological aspects 46
 3.2.1 Planning of the study 46
 3.2.2 Laboratory analyses 50
 3.2.3 Statistical analyses 52

3.3 Examples 56
 3.3.1 N-Acetyltransferases (NAT1 and NAT2) and lung cancer risk 56
 3.3.2 Glutathione-S-transferases and lung cancer risk 57
 3.3.3 Myeloperoxidase and lung cancer risk 57
 3.3.4 CYP3A4 and CYP3A5 and lung cancer risk 58

3.4 Discussion 59
Acknowledgements 62
III MODELING FOR CANCER RISK ASSESSMENT

Introductory remarks

7. Modeling Exposure and Target Organ Concentrations 115
Karen H. Watanabe

7.1 Introduction 115
7.1.1 Physiologically based pharmacokinetic models 115
7.1.2 Model formulation 117
7.1.3 Data sources 118
7.2 Data from molecular biology 119
7.2.1 Metabonomics 119
7.3 The next generation of physiological models 121
7.4 Discussion and conclusions 123
Acknowledgements 124

8. Stochastic Carcinogenesis Models 125
Annette Kopp-Schneider, Iris Burkholder and Jutta Groos

8.1 Introduction 125
8.1.1 Classification of carcinogens 126
8.1.2 Foci of altered hepatocytes 126
8.1.3 Stereological aspects in the evaluation of liver focal lesions 126
8.2 Stochastic models for hepatocarcinogenesis 129
8.2.1 The multistage model with clonal expansion 129
8.2.2 The color-shift model 131
8.3 Model-based evaluation of liver focal lesion data 131
8.3.1 Model-based approach to study the mode of action of chemicals 131
8.3.2 Model-based approach to study the process of formation and growth of liver foci 132
8.4 Conclusions 135

9. A Unified Modeling Approach: From Exposure to Disease Endpoints 137
Chao W. Chen

9.1 Background 137
9.2 Conventional approach to modeling carcinogenesis 139
9.3 State space modeling using sampling techniques 140
9.4 Self-organizing algorithm for state space modeling 142
9.5 Some examples of state space models 143
9.5.1 State space model for cell labeling 143
9.5.2 State space model of carcinogenesis 147
9.6 A computing procedure for the three-stage model 152
9.7 Discussion 154
Appendix: Simulation programs 156

10. Modeling Lung Cancer Screening 161
Marek Kimmel, Olga Y. Gorlova and Claudia I. Henschke

10.1 Introduction 161
10.2 Screening and Other Relevant Studies 162
10.2.1 Czechoslovak study 162
10.2.2 Memorial Sloan-Kettering cancer center (MSKCC) and Johns Hopkins Medical Institution (JHMI) studies 162
10.2.3 Mayo Lung Project (MLP) 162
10.2.4 MD Anderson case–control study 163
10.2.5 Early Lung Cancer Action Project 163
10.2.6 New York Early Lung Cancer Action Project 164
10.2.7 International Early Lung Cancer Action Program 164
10.2.8 National Lung Screening Trial (NLST) 164
10.3 Principles of modeling of lung cancer screening 165
10.3.1 Natural history of disease 165
10.3.2 Critical parameters 166
10.3.3 Mortality versus case fatality versus survival 167
10.4 Review of modeling approaches 168
10.4.1 Statistical model of lung cancer progression, detection and treatment 168
10.4.2 Simulation modeling of the Mayo Lung Project 168
10.4.3 Modeling of the long-term follow-up of Mayo Lung Project participants 169
10.4.4 Modeling the outcome of the Czechoslovak screening study 169
10.4.5 Upper bound on reduction in cancer mortality due to periodic screening, based on observational data 170
10.4.6 Markov model of helical CT-screened and non-screened cohort 170
10.4.7 Cost-effectiveness study of baseline low-dose CT screening for lung cancer 171
10.5 Modeling the impact of new screening modalities on reduction of mortality from lung cancer 171
10.5.1 Modeling the NLST trial 171
10.5.2 Modeling the effects of long-term mass screening by CT scan 172
10.6 Comparison of models and concluding remarks 173
13.3 Dose-response models
 13.3.1 Qualitative dose-response analysis
 13.3.2 Quantitative dose-response analysis
 13.3.3 Threshold-type dose-response models
13.4 Dose-response models in risk assessment
 13.4.1 Model search
 13.4.2 Low-dose extrapolation
 13.4.3 Linear versus nonlinear low-dose extrapolation
 13.4.4 Point of departure
13.5 Dose-Response modeling of 2,3,7,8-tetrachlorodibenzo-p-dioxin
 13.5.1 Biological basis and mechanisms of action
 13.5.2 Toxicokinetic dose-response models
 13.5.3 Laboratory animal responses
 13.5.4 Human response
 13.5.5 Further aspects
13.6 Concluding remarks

14 Benchmark Dose Approach
 Fred Parham and Christopher Portier
 14.1 Introduction
 14.2 Use by regulatory agencies
 14.3 Calculation methods
 14.3.1 Types of models
 14.3.2 Fitting to data
 14.3.3 Goodness of fit
 14.3.4 Lower confidence limit
 14.3.5 Experimental design, dose selection and response metrics
 14.4 Literature survey
 14.5 Software and calculation example

15. Uncertainty Analysis: The Bayesian Approach
 Frédéric Y. Bois and Cheikh T. Diack
 15.1 Introduction
 15.2 Representations of uncertainty
 15.3 Causes of uncertainty
 15.4 Types of uncertainty
 15.4.1 Model uncertainty
 15.4.2 Parameter uncertainty
 15.4.3 Decision framework uncertainty
 15.5 Quantifying uncertainty
 15.5.1 Parameter uncertainty
 15.5.2 Model uncertainty