More Praise for *My Life as a Quant*

“An honest account of the experience of going from an environment of Nobel Prize winners and pure thought to one of money, money, money. Derman gives us unique insight into the motivations of academia, the pressure to cast off worldly success in favor of matters more cerebral, then the mixed feelings during his descent into a world where the bottom line is P&L, and finally his success at bringing his own style of science into investment banking.”

—Paul Wilmott,
mathematician, author, and fund manager

“A fascinating personal account of one man’s journey through several of the leading institutions of our time. Written by perhaps the leading practitioner of his generation, this insightful narrative explores the disparate cultures of physics, finance, and their powerful fusion known as phynance. This book is a must-read for aspiring quants, financial historians, and armchair sociologists interested in the machinations of both academia and industry.”

—Peter Carr,
Head of Quantitative Research, Bloomberg,
and Director, Masters in Math Finance, NYU
My Life as a Quant

Reflections on Physics and Finance

Emanuel Derman

John Wiley & Sons, Inc.
To the Memory of My Parents
Ambition is a state of permanent dissatisfaction with the present.
Contents

PROLOGUE THE TWO CULTURES 1
- Physics and finance
- What quants do
- The Black-Scholes model
- Quants and traders
- Pure thought and beautiful mathematics can divine the laws of physics
- Can they do the same for finance?

CHAPTER 1 ELECTIVE AFFINITIES 17
- The attractions of science
- The glory days of particle physics
- Driven by ambitious dreams to Columbia
- Legendary physicists and budding wunderkinder
- Talent versus character, plans versus luck

CHAPTER 2 DOG YEARS 29
- Life as a graduate student
- Wonderful lectures
- T. D. Lee, the brightest star in the firmament
- Seven lean years
- Getting out of graduate school only half-alive

CHAPTER 3 A SORT OF LIFE 53
- The priesthood of itinerant postdocs
- Research isn’t easy
- Almost perishing, then publishing
- The delirious thrill of collaboration and discovery

CHAPTER 4 A SENTIMENTAL EDUCATION 65
- Oxford’s civilized charms
- One physics paper leads to another
- English idiosyncrasies
- The anthroposophists
CONTENTS

CHAPTER 12 A SEVERED HEAD 191
- A troubled year at Salomon Bros.
- Modeling mortgages
- Salomon’s skill at quantitative marketing
- Mercifully laid off

CHAPTER 13 CIVILIZATION AND ITS DISCONTENTS 203
- Goldman as home
- Heading the Quantitative Strategies Group
- Equity derivatives
- The Nikkei puts and exotic options
- Nothing beats working closely with traders
- Financial engineering becomes a real field

CHAPTER 14 LAUGHTER IN THE DARK 225
- The puzzle of the volatility smile
- Beyond Black-Scholes: the race to develop local-volatility models of options
- The right model is hard to find

CHAPTER 15 THE SNOWS OF YESTERYEAR 251
- Wall Street consolidates
- Clothing goes casual
- Moving from equity derivatives to firmwide risk
- The bursting of the Internet bubble
- Taking my leave

CHAPTER 16 THE GREAT PRETENDER 265
- Full circle, back to Columbia
- Physics and finance redux
- Different endeavors require different degrees of precision
- Financial models as *gedanken* experiments

Acknowledgments 271
Index 273
Prologue

The Two Cultures

Physics and finance What quants do The Black-Scholes model Quants and traders Pure thought and beautiful mathematics can divine the laws of physics Can they do the same for finance?

MODELING THE WORLD

If mathematics is the Queen of Sciences, as the great mathematician Karl Friedrich Gauss christened it in the nineteenth century, then physics is king. From the mid-seventeenth century to the end of the nineteenth, Newton's Law of Gravitation, his three Laws of Motion, and his differential calculus described with apparent perfection the mechanical motion of objects in our world and the solar system.

In 1864, two hundred years after Newton, the Scottish physicist James Clerk Maxwell formulated the compact and elegant differential equations that described with similarly astounding precision the propagation of light, X-rays, and radio waves. Maxwell's equations showed that electricity and magnetism, formerly separate phenomena, were part of the same unified electromagnetic field.

We cannot simply look at the world around us and deduce Newton’s Laws or Maxwell’s equations. Data on its own does not speak. These equations were triumphs of the mind, abstracted from the world in