PRINCIPLES OF SEQUENCING AND SCHEDULING
PRINCIPLES OF SEQUENCING AND SCHEDULING

Kenneth R. Baker
Tuck School of Business
Dartmouth College
Hanover, New Hampshire

Dan Trietsch
College of Engineering
American University of Armenia
Yerevan, Armenia
CONTENTS

Preface xiii

1 Introduction 1
 1.1 Introduction to Sequencing and Scheduling, 1
 1.2 Scheduling Theory, 3
 1.3 Philosophy and Coverage of the Book, 6
 References, 8

2 Single-Machine Sequencing 10
 2.1 Introduction, 10
 2.2 Preliminaries, 11
 2.3 Problems Without Due Dates: Elementary Results, 15
 2.3.1 Flowtime and Inventory, 15
 2.3.2 Minimizing Total Flowtime, 16
 2.3.3 Minimizing Total Weighted Flowtime, 19
 2.4 Problems with Due Dates: Elementary Results, 21
 2.4.1 Lateness Criteria, 21
 2.4.2 Minimizing the Number of Tardy Jobs, 24
 2.4.3 Minimizing Total Tardiness, 25
 2.4.4 Due Dates as Decisions, 29
 2.5 Summary, 31
 References, 31
 Exercises, 32
CONTENTS

3 Optimization Methods for the Single-Machine Problem 34
 3.1 Introduction, 34
 3.2 Adjacent Pairwise Interchange Methods, 36
 3.3 A Dynamic Programming Approach, 37
 3.4 Dominance Properties, 43
 3.5 A Branch and Bound Approach, 47
 3.6 Summary, 53
 References, 55
 Exercises, 55

4 Heuristic Methods for the Single-Machine Problem 57
 4.1 Introduction, 57
 4.2 Dispatching and Construction Procedures, 58
 4.3 Random Sampling, 63
 4.4 Neighborhood Search Techniques, 66
 4.5 Tabu Search, 70
 4.6 Simulated Annealing, 72
 4.7 Genetic Algorithms, 74
 4.8 The Evolutionary Solver, 75
 4.9 Summary, 79
 References, 81
 Exercises, 81

5 Earliness and Tardiness Costs 86
 5.1 Introduction, 86
 5.2 Minimizing Deviations from a Common Due Date, 88
 5.2.1 Four Basic Results, 88
 5.2.2 Due Dates as Decisions, 93
 5.3 The Restricted Version, 94
 5.4 Asymmetric Earliness and Tardiness Costs, 96
 5.5 Quadratic Costs, 99
 5.6 Job-Dependent Costs, 100
 5.7 Distinct Due Dates, 101
 5.8 Summary, 104
 References, 105
 Exercises, 105

6 Sequencing for Stochastic Scheduling 108
 6.1 Introduction, 108
 6.2 Basic Stochastic Counterpart Models, 109
 6.3 The Deterministic Counterpart, 115
 6.4 Minimizing the Maximum Cost, 117
 6.5 The Jensen Gap, 122
 6.6 Stochastic Dominance and Association, 123
6.7 Using Risk Solver, 127
6.8 Summary, 132
 References, 134
 Exercises, 134

7 Safe Scheduling

7.1 Introduction, 137
7.2 Meeting Service-Level Targets, 138
7.3 Trading Off Tightness and Tardiness, 141
7.4 The Stochastic E/T Problem, 145
7.5 Setting Release Dates, 149
7.6 The Stochastic U-Problem: A Service-Level Approach, 152
7.7 The Stochastic U-Problem: An Economic Approach, 156
7.8 Summary, 160
 References, 161
 Exercises, 162

8 Extensions of the Basic Model

8.1 Introduction, 165
8.2 Nonsimultaneous Arrivals, 166
 8.2.1 Minimizing the Makespan, 169
 8.2.2 Minimizing Maximum Tardiness, 171
 8.2.3 Other Measures of Performance, 172
8.3 Related Jobs, 174
 8.3.1 Minimizing Maximum Tardiness, 175
 8.3.2 Minimizing Total Flowtime with Strings, 176
 8.3.3 Minimizing Total Flowtime with Parallel Chains, 178
8.4 Sequence-Dependent Setup Times, 181
 8.4.1 Dynamic Programming Solutions, 183
 8.4.2 Branch and Bound Solutions, 184
 8.4.3 Heuristic Solutions, 189
8.5 Stochastic Models with Sequence-Dependent Setup Times, 190
 8.5.1 Setting Tight Due Dates, 191
 8.5.2 Revisiting the Tightness/Tardiness Trade-off, 192
8.6 Summary, 195
 References, 196
 Exercises, 197

9 Parallel-Machine Models

9.1 Introduction, 200
9.2 Minimizing the Makespan, 201
 9.2.1 Nonpreemptable Jobs, 202
 9.2.2 Nonpreemptable Related Jobs, 208
 9.2.3 Preemptable Jobs, 211
CONTENTS

9.3 Minimizing Total Flowtime, 213
9.4 Stochastic Models, 217
 9.4.1 TheMakespan Problem with Exponential Processing Times, 218
 9.4.2 Safe Scheduling with Parallel Machines, 220
9.5 Summary, 221
References, 222
Exercises, 223

10 Flow Shop Scheduling 225

10.1 Introduction, 225
10.2 Permutation Schedules, 228
10.3 The Two-Machine Problem, 230
 10.3.1 Johnson’s Rule, 230
 10.3.2 A Proof of Johnson’s Rule, 232
 10.3.3 The Model with Time Lags, 234
 10.3.4 The Model with Setups, 235
10.4 Special Cases of The Three-Machine Problem, 236
10.5 Minimizing the Makespan, 237
 10.5.1 Branch and Bound Solutions, 238
 10.5.2 Heuristic Solutions, 241
10.6 Variations of the m-Machine Model, 243
 10.6.1 Ordered Flow Shops, 243
 10.6.2 Flow Shops with Blocking, 244
 10.6.3 No-Wait Flow Shops, 245
10.7 Summary, 247
References, 248
Exercises, 249

11 Stochastic Flow Shop Scheduling 251

11.1 Introduction, 251
11.2 Stochastic Counterpart Models, 252
11.3 Safe Scheduling Models with Stochastic Independence, 258
11.4 Flow Shops with Linear Association, 261
11.5 Empirical Observations, 262
11.6 Summary, 267
 References, 268
 Exercises, 269

12 Lot Streaming Procedures for the Flow Shop 271

12.1 Introduction, 271
12.2 The Basic Two-Machine Model, 273
 12.2.1 Preliminaries, 273
 12.2.2 The Continuous Version, 274
CONTENTS

12.2.3 The Discrete Version, 277
12.2.4 Models with Setups, 279
12.3 The Three-Machine Model with Consistent Sublots, 281
 12.3.1 The Continuous Version, 281
 12.3.2 The Discrete Version, 284
12.4 The Three-Machine Model with Variable Sublots, 285
 12.4.1 Item and Batch Availability, 285
 12.4.2 The Continuous Version, 285
 12.4.3 The Discrete Version, 287
 12.4.4 Computational Experiments, 290
12.5 The Fundamental Partition, 292
 12.5.1 Defining the Fundamental Partition, 292
 12.5.2 A Heuristic Procedure for s Sublots, 295
12.6 Summary, 295
References, 297
Exercises, 298

13 Scheduling Groups of Jobs

13.1 Introduction, 300
13.2 Scheduling Job Families, 301
 13.2.1 Minimizing Total Weighted Flowtime, 302
 13.2.2 Minimizing Maximum Lateness, 304
 13.2.3 Minimizing Makespan in the Two-Machine Flow Shop, 306
13.3 Scheduling with Batch Availability, 309
13.4 Scheduling with a Batch Processor, 313
 13.4.1 Minimizing the Makespan with Dynamic Arrivals, 314
 13.4.2 Minimizing Makespan in the Two-Machine Flow Shop, 315
 13.4.3 Minimizing Total Flowtime with Dynamic Arrivals, 317
 13.4.4 Batch-Dependent Processing Times, 318
13.5 Summary, 320
References, 321
Exercises, 322

14 The Job Shop Problem

14.1 Introduction, 325
14.2 Types of Schedules, 328
14.3 Schedule Generation, 333
14.4 The Shifting Bottleneck Procedure, 337
 14.4.1 Bottleneck Machines, 338
 14.4.2 Heuristic and Optimal Solutions, 339
PREFACE

This textbook provides an introduction to the concepts, methods, and results of scheduling theory. It is written for graduate students and advanced undergraduates who are studying scheduling, as well as for practitioners who are interested in the knowledge base on which modern scheduling applications have been built. The coverage assumes no background in scheduling, and for stochastic scheduling topics, we assume only a familiarity with basic probability concepts. Among other things, our first appendix summarizes the important properties of the probability distributions we use.

We view scheduling theory as practical theory, and we have made sure to emphasize the practical aspects of our topic coverage. Thus, we provide algorithms that implement some of the solution concepts we describe, and we cover the use of spreadsheet models to calculate solutions to scheduling problems. Especially when tackling stochastic scheduling problems, we must balance the need for tractability and the need for realism. Thus, we stress heuristics and simulation-based approaches when optimization methods and analytic tools fall short. We also provide many examples in the text along with computational exercises among our end-of-chapter problems.

Coverage of the Text

The material in this book can support a variety of course designs. An introductory-level course covering only deterministic scheduling can draw from Chapters 1–5, 8–10, 12–14, 16, and 17. A one-quarter course that covers both deterministic and stochastic topics can use Chapters 1–11 and possibly 15. Our own experience suggests that the entire book can support a two-quarter sequence, especially with supplementary material we provide on the Internet.