Symmetry and Structure
Readable Group Theory for Chemists
Third Edition

Sidney F. A. Kettle
Professorial Fellow in the School of Chemical Sciences and Pharmacy, University of East Anglia

John Wiley & Sons, Inc.
Symmetry and Structure
Readable Group Theory for Chemists
Contents

Preface to Third Edition ix

1 **Theories in conflict** 1
 1.1 Introduction 1
 1.2 The ammonia molecule 1
 1.2.1 The atomic orbital model 2
 1.2.2 The hybrid orbital model 3
 1.2.3 The electron-repulsion model 4
 1.2.4 The electron-spin-repulsion model 6
 1.2.5 Accurate calculations 7

2 **The symmetry of the water molecule** 11
 2.1 Symmetry operations and symmetry elements 11
 2.2 Multipliers associated with symmetry operations 19
 2.3 Group multiplication tables 36
 2.4 Character tables 40
 2.5 Summary 43

3 **The electronic structure of the water molecule** 45
 3.1 The orthonormal properties of irreducible representations 45
 3.2 The transformation properties of atomic orbitals in the water molecule 47
 3.3 A reducible representation 51
 3.4 Symmetry-adapted combinations 54
 3.5 The bonding interactions in H₂O and their angular dependence 59
 3.6 The molecular orbital energy level diagram for H₂O 65
 3.7 Comparison with experiment 67
 3.8 The Walsh diagram for triatomic dihydrides 68
 3.9 Simple models for the bonding in H₂O 70
 3.10 A rapprochement between simple and symmetry models 73
 3.11 Summary 74

4 **Vibrational spectra of the water molecule** 75
 4.1 Vibrations of the water molecule: Part 1 (easy) 76
 4.2 Vibrations of the water molecule: Part 2 (less easy!) 80
 4.3 Product functions 92
CONTENTS

4.4 Direct products and quantum mechanical integrals 96
4.5 Spectroscopic selection rules 99
4.6 The vibrational spectroscopy of the water molecule 103
4.7 Optical activity 107
4.8 Summary 108

5 D2h character table and the electronic structures of ethene (ethylene) and diborane 109
5.1 The symmetry of the ethene molecule 109
5.2 The character and multiplication tables of the D2h group 112
5.3 Direct products of groups 114
5.4 Nodal patterns of the irreducible representations of the D2h group 117
5.5 The symmetries of the carbon atomic orbitals in ethene 121
5.6 The symmetries of the hydrogen 1s orbitals in ethene 128
5.7 The projection operator method 129
5.8 Bonding in the ethene molecule 134
5.9 Bonding in the diborane molecule 136
5.10 Comparison with other models 141
5.11 Summary 144

6 The electronic structure of bromine pentafluoride, BrF5 145
6.1 Symmetry operations of the C4v group 147
6.2 Problems in using the C4v group 150
6.3 Orthonormality relationships 152
6.4 The derivation of the C4v character table using the orthonormality theorems 155
6.5 Nodal patterns of the irreducible representations of C4v 160
6.6 The bonding in the BrF5 molecule 162
6.7 Summary 171

7 The electronic structure of the ammonia molecule 173
7.1 The symmetry of the ammonia molecule 173
7.2 Nodal patterns of the irreducible representations of C3v 178
7.3 The bonding in the ammonia molecule 180
7.4 Summary 187

8 The electronic structures of some octahedral molecules 189
8.1 The symmetry operations of the octahedron 190
8.2 Nodal patterns of the irreducible representations of the Oh group 199
8.3 The bonding in the SF6 molecule 204
8.4 Octahedral transition metal complexes 218
8.5 Summary 229

9 Point groups and their relationships 231
9.1 The determination of the point group of a molecule 231
9.2 The relationships between point groups 235
CONTENTS

9.3 Correlation tables 240
9.4 Summary 244

10 Tetrahedral, icosahedral and spherical symmetries 245
 10.1 An overview 245
 10.2 The tetrahedron 247
 10.3 The icosahedron 251
 10.4 Spherical symmetry 254
 10.5 Linear molecules 261
 10.6 Summary 262

11 π-Electron systems 263
 11.1 Square cyclobutadiene and the C_4 point group 263
 11.2 Working with complex characters 268
 11.3 The π orbitals of cyclobutadiene 269
 11.4 The energies of the π orbitals of cyclobutadiene
 in the Hückel approximation 271
 11.5 Symmetry and chemical reactions 276
 11.6 Summary 280

12 The group theory of electron spin 281
 12.1 The problem of electron spin 281
 12.2 More about the symmetry of product functions 288
 12.3 Configurations and terms 289
 12.4 The inclusion of electron spin 294
 12.5 Summary 297

13 Space groups 299
 13.1 The crystal systems 299
 13.2 The Bravais lattices 308
 13.3 The crystallographic point groups 311
 13.4 The symmorphic space groups 317
 13.5 The non-symmorphic space groups 322
 13.6 Unit cells 325
 13.7 Wigner–Seitz unit cells 327
 13.8 Summary 330

14 Spectroscopic studies of crystals 331
 14.1 Translational invariance 331
 14.2 The factor group and unit cell group models 333
 14.3 Examples of use of the factor and unit cell group models 336
 14.3.1 The ν(CO) spectra of crystalline $(C_6H_6)Cr(CO)_3$ 336
 14.3.2 The vibrational spectrum of a M(\equivO)_3 species crystallizing
 in the $C2/c (C_{2h})$ space group using the unit cell model 340
 14.4 Summary 344
CONTENTS

Appendix 1 Groups and classes: definitions and examples 345
 A1.1 Groups 345
 A1.2 Some examples of groups 347
 A1.3 The classes of a group 349
 A1.4 Class algebra 352

Appendix 2 Matrix algebra and group theory 355
 A2.1 Matrix algebra and symmetry operations 355
 A2.2 Direct products 363

Appendix 3 Character tables of the more important point groups 369

Appendix 4 The fluorine group orbitals of π symmetry in SF$_6$ 391
 A4.1 Ligand group orbitals of complex ions 397

Appendix 5 The Hermann–Mauguin notation 404

Appendix 6 Non-symmorphic relatives of the point group D_2 407
 A6.1 The space group $P2_1/c(C_{5h})$ 416

Index 421
Preface to Third Edition

Although this third edition of ‘Symmetry and Structure’ has much in common with previous editions, there are major differences too. Most important is a new emphasis on the fact that irreducible representations characterize particular nodal patterns (or vice versa!). It is possible to draw pictures of these nodal patterns and so to give pictorial illustrations of irreducible representations. This is particularly useful for the simpler groups, where much of the group theory may be done pictorially. To obtain the maximum benefit from this approach, Chapters 2–4 contain a basic but reasonably complete overview of the application of group theory to chemistry (or, more accurately, the water molecule!). The major omission, of course, is that of degeneracy. The nodal pattern approach applies not only to the simple groups. Its use has enabled the inclusion of a chapter on electron spin, double groups and spin-orbit coupling. The inclusion of these has been facilitated by the addition of a chapter which includes the spherical group. Hopefully, the treatment of double groups is both readable and accurate. In general, the mathematical content of the book has been reduced, both in the text and in the Appendices. Although clearly there are limits, I have tried to make each chapter as independent as possible. This has led to some duplication of material – which may be no bad thing. By providing cross-references, the student can obtain a, somewhat, different approach to a difficult point, should the need arise. Above all, I have borne in mind the sub-title of the book, that the content should be readable, and with no loss of accuracy. If at some points the reader finds it fun too, that would be a bonus.

I am particularly grateful to Professors K. Gatterer (Graz) and E. Diana (Turin) for providing material which I have used and also for their comments on the text itself. All deficiencies which remain are, of course, my responsibility.

Sidney F.A. Kettle

Tuttington
1 Theories in conflict

1.1 Introduction
As its title says, this book is concerned with the symmetry and structure of molecules. Of these, the latter – both in the sense of the geometric and of the electronic structure of molecules – has long been of concern to chemists. We shall be interested in both these aspects and will adopt the viewpoint that the geometric structure of a molecule tells us something about its electronic structure. The connection between the two will be provided by the molecular symmetry, or rather its expression in what is called group theory. Ultimately, however, this book is concerned with the chemical consequences of molecular symmetry, the application of group theory to molecules, and these extend far beyond the problems of chemical bonding. Rather, the problem of chemical bonding will be used as a particularly convenient – and important – way of introducing the concepts of symmetry. The concepts revealed in this way can then be extended to other areas of chemistry. In an introductory text such as this there will be no attempt to cover all of the uses of symmetry in chemistry – an objective which it would be difficult to achieve in any text. Rather, the more important aspects will be detailed, but sometimes with more than a hint of the advanced. The aim will be to provide a cover of the basics of the subject sufficient to enable the reader to apply them in other areas. Further, this will be done in a readable, almost entirely non-mathematical manner. The take-home message is that the use of symmetry in chemistry is all about phase patterns: that is, about nodal planes akin to those that distinguish different atomic orbitals. But this is to come; in the present chapter we cover material that, hopefully, is familiar to the reader – explanations of why molecules have the shapes that are observed. The examples covered are chosen to be simple and mostly well known. But the final conclusions are surprising and lead us to query the validity of the simple models that we discuss. Rather than exploring these uncertainties, we will find more value in reversing the argument – and this reversal will be a recurrent theme throughout the book. It has already been mentioned. Start with the observed structure and use this to obtain information about the bonding. But first, the more traditional approach.

1.2 The ammonia molecule
The ammonia molecule provides a convenient starting point for our study and it will be used to see the problem of chemical bonding in a rather unusual perspective, one that leads to the approach indicated above – the attempt to infer molecular bonding from molecular
The ammonia molecule; the models in the text seek to explain the experimental bond angle geometry (in contrast to the more common procedure of explaining molecular geometry in terms of chemical bonding). Several approaches to the bonding in the ammonia molecule will first be reviewed, approaches which have been in the chemical literature for many years. The reader may well not be familiar with all of them but he or she should not feel that they have to spend much time trying to master any new ones – our concern is with generalities, not details. However, references are given to enable the reader to explore any of the approaches in more detail, if they so wish.

1.2.1 The atomic orbital model

This model has an historic importance – it is the only description to be found in many pre-1955 texts. Before looking at it, the facts. The ammonia molecule is pyramidal in shape; all three hydrogen atoms are equivalent, the HNH bond angle being 107° (Figure 1.1). Note the restriction that has implicitly been made: we will not attempt to explain bond lengths, only angles. The simplest, and oldest, explanation of the (angular) shape follows from the recognition that the ground state electronic configuration of an isolated nitrogen atom is $$(1s)^2 (2s)^2 (2p)^3$$, each of the 2p electrons occupying a different p orbital. Each of these 2p electrons may be paired with the electron present in the 1s orbital of a hydrogen atom by placing one hydrogen atom at one end of each 2p orbital so that each nitrogen 2p orbital overlaps with a hydrogen 1s orbital, giving a localized N-H bond. The result is an ammonia molecule which has the correct, pyramidal shape and which has all of three hydrogen atoms equivalently bonded to the nitrogen (Figure 1.2). However, the angle between any pair of 2p orbitals is 90° so that a bond angle of 90° is predicted by this model. Agreement with an experimental value of 107° is obtained by postulating the existence of electrostatic repulsion forces between the hydrogen atoms, each of which, it is assumed, carries a small residual charge. These repulsions cause the H atoms to move further apart – and so the bond angles increase. If, as seems probable, each N-H bond is slightly polar with each hydrogen carrying a small positive charge, this repulsion is nuclear–nuclear in origin. The consequent modification of the original bonding scheme as a result of this distortion of the bond angle from 90° is not usually considered.

1 See, for example, p. 65 of Inorganic Chemistry, by E. de Barry-Barnett and C.L. Wilson, Longman Green, London, 1953.
2 The reader who wishes to perform this correction should make a note to do it after they have read Chapter 7, when they will be adequately equipped.
THE AMMONIA MOLECULE

Figure 1.2 N—H bonding in NH₃ envisaged as resulting from the overlap of 2p orbitals of the nitrogen with 1s orbitals of the hydrogens. Because the three nitrogen 2p orbitals have their maximum amplitudes at 90° to each other, bond angles of this value are predicted. The overlap regions are shown shaded.

1.2.2 The hybrid orbital model

This is detailed in many post-1955 texts.³ In this model an alternative description of the bonding in the ammonia molecule is obtained by hybridizing the valence shell orbitals of an isolated nitrogen atom, 2s, 2px, 2py, and 2pz, to give four, equivalent, sp³ hybrid orbitals pointing towards the corners of a regular tetrahedron. Because there are five electrons in the valence shell of the nitrogen atom, three of these hybrid orbitals may be regarded as containing one electron whilst the fourth is occupied by two electrons. As in the previous model, 1s electrons from three hydrogen atoms pair with the unpaired electrons on the nitrogen, now in hybrid orbitals, to give three localized bonds and a pyramidal ammonia molecule (Figure 1.3). Again, the three hydrogen atoms are equivalent but the bond angle is predicted to be 109.5°, the angle between the axes of a pair of sp³ hybrid orbitals. This value is in closer agreement with experiment than that given by the previous model but again some correction is needed if the experimental value is to be reproduced. This time, the predicted bond angle is too big so a different source has to be found for the correction. It is usually made by invoking the effects of electron–electron repulsion. It is this electron–electron repulsion which forms the basis of a third model for ammonia and so the way that the ‘hybrid orbital’ model is modified to give agreement with experiment is contained in the description of

³ See, for example, p. 159 of Valency and Molecular Structure by E. Cartmell and G.W.A. Fowles, Butterworth, London, 1956.